期刊文献+

基于深度玻尔兹曼机的蛋白质相互作用预测 被引量:1

Prediction of Protein-Protein Interaction Using Deep Boltzmann Machine
原文传递
导出
摘要 本文针对传统蛋白质相互作用预测模型预测精度不够高的问题,提出一种改进的深度玻尔兹曼机(DBM)模型以更精确地预测蛋白质的相互作用。首先,将多尺度特征组提取和自协方差编码方法结合编码序列特征,并利用DBM自动筛选有效特征。同时,为了避免采用sigmoid或tanh激活函数在深度网络中出现过饱和的问题,本文采用Re LU改进的深度玻尔兹曼机(RBM),使网络具备稀疏性,从而避免模型过拟合,加快收敛速度。在酵母菌PPIs数据集上,本文算法达到了92.27%的准确率,优于传统的方法。 To address the problem that prediction accuracy is not high enough in traditional protein interaction prediction model, we present a new improved deep boltzmann machine model(DBM) to predict protein interactions accurately. Firstly, combining a novel Multi-scale Continuous and Discontinuous(MCD) feature representation and autocovariance approach to encoding protein sequence, and employing DBM to automatically select an effective feature. In addition, in order to avoid saturation by using sigmoid or tanh activation function in depth network, Re LU modified restricted boltzmann machine(RBM) is selected to improve the sparsity of the network, to avoid over-fitting,and to improve the convergence rate. The prediction accuracy of proposed model on yeast PPIs data set achieved92.27%, which indicates that our performance better than the previous related models.
出处 《基因组学与应用生物学》 CAS CSCD 北大核心 2015年第8期1791-1797,共7页 Genomics and Applied Biology
基金 中央高校基本科研业务费专项资金资助
关键词 RE LU激活函数 深度玻尔兹曼机 序列编码 蛋白质相互作用 Re LU activation function Deep boltzmann machine Sequence encoding Protein interaction
  • 相关文献

参考文献4

二级参考文献36

  • 1王东宁,孙向军,张惟杰,吴祥甫.鲎血细胞中脂多糖结合蛋白TALF在大肠杆菌中的表达研究[J].生物工程学报,2004,20(4):540-543. 被引量:1
  • 2孙向军,王东宁,张惟杰,吴祥甫.东方鲎Factor C中的结构域在结合脂多糖中的作用[J].生物化学与生物物理进展,2004,31(8):736-740. 被引量:3
  • 3狄洌,张宏伟,徐朗莱.Ssp dnaB蛋白质内含子介导的重组人脑钠素的制备[J].生物工程学报,2006,22(2):180-186. 被引量:6
  • 4Mohamed T, Tarun S, Madhavi K G. An efficient heuristic method for active feature acquisition and its application to pro- tein-protein interaction prediction[J]. BMC Proceedings, 2012,6 (Suppl 7) :S2.
  • 5Deane C M, Salwinski L, Xenarios I, et al. Protein interactions: two methods for assessment of the reliability of high throughput observations[J]. Mol Cell Proteomies, 2002,1(5) : 349-356.
  • 6yon Mering C, Krause R, Snel B, et al. Comparative assessment of large-scale data sets of protein-protein interactions[J]. Na- ture, 2002,417(6887) : 399-403.
  • 7Ito T, Tashiro K, Muta S, et al. Toward a protein-protein inter- action map of the budding yeast: A comprehensive system to ex- amine two-hybrid interactions in all possible combinations be- tween the yeast proteins[J]. PNAS,2000,97(3) : 1143-1147.
  • 8Jansen R, Yu H, Greenbaum D et al. A Bayesian networks ap- proach for predicting protein-protein interactions from genomic data[J]. Science, 2003,302(5644) :449-453.
  • 9Qi Y,Bar-Joseph Z,Klein-Seetharaman J. Evaluation of different biological data and computational classification methods for use in protein interaction prediction[J]. Proteins, 2006,63 (3): 490- 500.
  • 10Lin N,Wu BJansen R,et al. Information assessment on predic- ting protein-protein interactions[J]. BMC Bioinformatics, 2004, 5:154.

共引文献18

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部