期刊文献+

基于AE-OCSVM模型的电力大数据异常值检测方法

Abnormal Value Detection Method for Power Big Data Based on AE-OCSVM Model
在线阅读 下载PDF
导出
摘要 异常值检测在数据处理中具有重要意义。为解决电力数据量庞大,维数爆炸问题,文章提出深度自动编码一类支持向量机(AE-OCSVM)模型。该模型使用深度自动编码网络对输入数据降维和进行特征表示,利用OC-SVM对异常值进行预测,采用Isolation Forest、OC-SVM、PCA-KMeans、PCA-GMM(TN=0)、DBSCAN、LOF、DAGMM、VAEGMM和AE-OCSVM 9种算法处理同一组数据,以验证文章所提方法优于其他模型。 Outlier detection is of great significance in data processing.To solve the problem of large data volume and exploding dimensionality,this paper proposes a deep autoencoder support vector machine(AE-OVSVM)model.The model first uses a deep autoencoder network to reduce the dimensionality of the input data for feature representation,and then uses OC-SVM to predict outliers.Finally,9 algorithms including Isolation Forest,OC-SVM,PCA KMeans,PCA-GMM(TN=0),DBSCAN,LOF,DAGMM,VAEGMM,and AE ocsvm were used to process the same set of data,verifying that the proposed method outperforms other models.
作者 刘阳 LIU Yang
出处 《今日自动化》 2024年第11期124-125,128,共3页 Automation Today
关键词 AE-OCSVM模型 电力 大数据 异常值检测方法 AE-OCSVM model electricity big data outlier detection method
  • 相关文献

参考文献3

二级参考文献26

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部