摘要
结合解析函数空间理论及复微分方程理论,讨论了非线性非齐次复微分方程(f(k))^(n)_(k)+B_(k-1)(f^((k-1)))^(n)_(k)-1+…+B_(1)(f′)^(n)_(1)+B_(0)f=B_(k)解析解的性质,得到了方程解析解属于加权Bergman空间A pω的系数条件.
The properties of analytic solutions of the nonlinear nonhomogeneous complex differential equation(f(k))^(n)_(k)+B_(k-1)(f^((k-1)))^(n)_(k)-1+…+B_(1)(f′)^(n)_(1)+B_(0)f=B_(k) is discussed by combining the theory of analytic function space and theory of complex differential equation,the coefficient condition that the analytical solution belongs to the weighted Bergman space(A pω)is obtained.
作者
孙雪芳
李明金
徐江
SUN Xue-fang;LI Ming-jin;XU Jiang(School of Mathematical Sciences,Guizhou Normal University,Guiyang 550025,China)
出处
《东北师大学报(自然科学版)》
CAS
北大核心
2024年第3期11-17,共7页
Journal of Northeast Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(12261023,11861023)
贵州师范大学学术新苗培养及创新探索专项项目(黔科合平台人才[2018]5769-05号).