期刊文献+

基于暴雨灾害短视频的多模态情感特征研究 被引量:4

Research on multimodal emotion characteristics based on short video of rainstorm disaster
原文传递
导出
摘要 为提高灾害应对效率,将“河北暴雨”“黑龙江暴雨”作为典型跨区域研究案例,收集短视频的文本-图像-音频多模态数据;面对海量的非结构化数据,运用深度学习技术,构建多模态情感智能分类模型,实现短视频情感特征的提取、跨模态融合与智能情感分类;并综合利用时空大数据,在时空维度上深度挖掘与分析暴雨灾害短视频多模态情感特征。结果表明:该模型准确率达85%以上,能有效实现短视频多模态情感智能分类任务。在时间维度上,网民情感波动与暴雨灾害周期大致相符,可作为判断灾情严重程度和舆情走向的依据;媒体及政府的干预对暴雨灾害情感演化具有重要作用。在空间维度上,消极情感随灾情转移呈现“低—高—低”变化趋势,且消极情感的共鸣和扩散效应呈现明显的地域性特征,需重视灾区、我国部分东部地区及类似灾害频发的非灾区舆情引导工作。 To improve the efficiency of disaster response,the"Hebei rainstorm"and"Heilongjiang rainstorm"were adopted as illustrative cross-regional research cases,and text-image-audio multimodal data were collected from short videos.In the face of massive unstructured data,deep learning technology was employed to realize the extraction of multimodal emotional features,cross-modal integration and intelligent sentiment classification in short videos.By comprehensively using spatial and temporal big data,the multimodal emotional characteristics of short video of rainstorm disaster were deeply mined and analyzed in the spatial and temporal dimension.The results indicate that the model's accuracy exceeds 85%,efficiently fulfilling the objectives set for short video analysis.From the temporal perspective,the emotional fluctuations of netizens broadly align with the cycle of rainstorm disasters,providing a basis for assessing disaster severity and public opinion trends.Furthermore,the intervention of media and government entities plays a significant role in shaping the emotional evolution surrounding rainstorm disasters.In terms of spatial dimensions,negative emotions exhibit a"low-high-low"trend as disasters shift locations,and the resonance and diffusion of these emotions display distinct regional characteristics.Therefore,it is imperative to prioritize public opinion guidance in disaster-stricken areas,as well as in some eastern regions of China and non-disaster areas experiencing similar phenomena.
作者 晋良海 王抒情 王昕煜 JIN Lianghai;WANG Shuqing;WANG Xinyu(Hubei Provincial Key Laboratory of Construction and Management of Hydropower Engineering,China Three Gorges University,Yichang Hubei 443002,China;College of Hydraulic&Environmental Engineering,China Three Gorges University,Yichang Hubei 443002,China;Safety Production Standardization Evaluation Center,China Three Gorges University,Yichang Hubei 443002,China)
出处 《中国安全科学学报》 CAS CSCD 北大核心 2024年第7期219-228,共10页 China Safety Science Journal
基金 教育部人文社科基金资助(21YJA630038) 中国长江三峡集团有限公司企业科研项目(202103551)。
关键词 暴雨灾害 短视频 多模态情感特征 深度学习 情感分类 rainstorm disaster short video multimodal emotion characteristics deep learning emotional classification
  • 相关文献

参考文献10

二级参考文献142

  • 1杨颖兮,喻国明.传播中的非理性要素:一项理解未来传播的重要命题[J].探索与争鸣,2021(5):131-138. 被引量:33
  • 2黄力行,辛乐,赵礼悦,陶建华.自适应权重的双模态情感识别[J].清华大学学报(自然科学版),2008,48(S1):715-719. 被引量:8
  • 3李志宏,何济乐,吴鹏飞.突发性公共危机信息传播模式的时段性特征及管理对策[J].图书情报工作,2007,51(10):88-91. 被引量:63
  • 4中华人民共和国中央人民政府.中华人民共和国突发事件应对法[EB/OL]. 2012-06-05. http://www. gov. cn/.
  • 5张乐.危机信息传播的社会网络结构和传播动力学研究[D].合肥:中国科学技术大学.2009.
  • 6中研网.发改委:2014-2020国家新型城镇化规划[EB/OL].[2014-05-16].http://www.chinaim.corn/news/20140411/154339402.shtml.
  • 7Dai WH,Hu HZ,Wu TN,et al. Information Spread of Emergen- cy Events:Path Searching on Social Networks [ J/OL]. The Sci- entific World Journal. [ 2014-08-11 ]. http ://dx. doi. org/10. 1155/2014/179620.
  • 8Boccaletti S, Latora V, Moreno Y, et al , Complex Networks: Structure and Dynamics [ J ]. Physics Reports-Review Section of Physics Letters,2006,424 (4/5) : 175-308.
  • 9Lasswell H D. The Structure and Function of Communication in Society [ M]. New York:Institute for Religious and Social Stud- ies, 1948.
  • 10Mohr J, Bogdanov P. Introduction-topic Models : What They are and Why They Matter[ J]. Poetics,2013,41 (6) :545-569.

共引文献162

同被引文献46

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部