摘要
Improving the efficiency of metal/reducible metal oxide interfacial sites for hydrogenation reactions of unsaturated groups(e.g.,C=C and C=O)is a promising yet challenging endeavor.In our study,we developed a Pd/CeO_(2) catalyst by enhancing the oxygen vacancy(O V)concentration in CeO_(2) through high-temperature treatment.This process led to the formation of an interface structure ideal for supporting the hydrogenation of methyl oleate to methyl stearate.Specifi cally,metal Pd^(0) atoms bonded to the O V in defective CeO_(2) formed Pd^(0)-O v-Ce^(3+)interfacial sites,enabling strong electron transfer from CeO_(2) to Pd.The interfacial sites exhibit a synergistic adsorption eff ect on the reaction substrate.Pd^(0) sites promote the adsorption and activation of C=C bonds,while O V preferably adsorbs C=O bonds,mitigating competition with C=C bonds for Pd^(0) adsorption sites.This synergy ensures rapid C=C bond activation and accelerates the attack of active H*species on the semi-hydrogenated intermediate.As a result,our Pd/CeO_(2)-500 catalyst,enriched with Pd^(0)-O v-Ce^(3+)interfacial sites,dem-onstrated excellent hydrogenation activity at just 30℃.The catalyst achieved a Cis-C18:1 conversion rate of 99.8% and a methyl stearate formation rate of 5.7 mol/(h·g metal).This work revealed the interfacial sites for enhanced hydrogenation reactions and provided ideas for designing highly active hydrogenation catalysts.
基金
This work was supported by the National Key Research and Development Program of China(No.2023YFB4203800).