期刊文献+

基于视觉的等离子坡口切割工件快速定位方法研究

Research on fast positioning method of plasma bevel cutting workpiece based on vision
在线阅读 下载PDF
导出
摘要 针对龙门式等离子零件坡口切割平台视觉系统对待切割零件识别速度慢、轮廓定位信息不准以及误匹配等问题,结合Hu矩和图像配准提出一种高效率的匹配和定位方法。首先通过阈值分割算法对图像进行降噪处理,分离零件背景与前景图,对零件轮廓进行识别,基于Hu矩实现对图像库的快速匹配;其次对读入的CAD图像进行坐标变换,通过定义轮廓最小外包斜矩形的角度,基于轮廓质心寻找到一个旋转角度初值并建立函数模型,利用遗传算法的思想优化迭代最优解;最后用CAD模板图像的轮廓路径,修正零件轮廓定位信息。实验结果表明该方法能够快速且准确地从零件图中搜索到与CAD图库中的对应零件,并实现定位信息修正,修正后的整体图像误差在6个像素左右。 The visual system of gantry ion parts groove cutting platform is slow to recognize the cutting parts,inaccurate contour positioning information and mismatching.An efficient matching and positioning method combining Hu moment and image registration is presented.Firstly,the threshold segmentation algorithm is used to reduce the noise of the picture,separate the background and foreground of the part,identify the outline of the part,and realize the rapid matching of the graphic library based on Hu moment.Secondly,coordinate transformation is carried out on the read CAD graphics,and an initial value of rotation Angle is found based on the contour centroid,and a function model is established.The iterative optimal solution is optimized using the idea of genetic algorithm.Finally,the contour path of the CAD template is used to correct the positioning information of the contour of the part.The experimental results show that the proposed method can quickly and accurately search the corresponding parts from the CAD library and realize the positioning information correction,and the overall image error after correction is about 6 pixels.
作者 赵明明 李文强 张永贵 ZHAO Mingming;LI Wenqiang;ZHANG Yonggui(Lanzhou University of Technology,Lanzhou 730050,China;CRRC Qishuyan Rolling Stock Technology Research Institute Co.,Ltd.,Changzhou 213011,China)
出处 《现代制造工程》 CSCD 北大核心 2024年第8期118-125,共8页 Modern Manufacturing Engineering
关键词 定位 图像匹配 图像配准 零件识别 精度 positioning pattern matching graphic registration part identification precision
  • 相关文献

参考文献10

二级参考文献85

  • 1韩萍,吴仁彪,蒋立辉.一种有效的SAR图像分割与目标识别方法[J].系统工程与电子技术,2004,26(6):734-737. 被引量:4
  • 2余肖生,周宁,张芳芳.基于KNN的图像自动分类模型研究[J].中国图书馆学报,2007,33(1):74-76. 被引量:9
  • 3Besl P J, McKay N D. A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach lntell, 1992, 14:239- 256.
  • 4Chetverikov D, Stepanov D, Krsek P. Robust euclidean alignment of 3D point sets: the trimmed iterative closest point algorithm. Image Vision Comput, 2005, 23:299 -309.
  • 5Sharp G C, Lee S W, Wehe D K, et al. ICP registration using invariant features. IEEE Trans Pattern Anal Mach Intell, 2002, 24:90-102.
  • 6Fitzgibbon A W. Robust registration of 2D and 3D point sets. hnage Vision Comput, 2003, 21:1145 -1153.
  • 7Jian B, Venmri B C. A robust algorithm for point set registration using mixture of Gaussians. In: Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, China, 2005. 1246- 1251.
  • 8Jian B, Vemuri B C. Robust point set registration using Gaussian mixture models. IEEE Trans Pattern Anal Maeh Intell, 2011, 33:1633- 1645.
  • 9Chui H, Rangarajan A. A feature registration framework using mixture models. In: Proceedings of IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, Hilton Head Island, SC, USA, 2000. 190- 197.
  • 10Chui H, Rangarajan A, Zhang J, et al. Unsupervised learning of an atlas from unlabeled point-sets. IEEE Trans Pattern Anal Mach Intell, 2004, 26:160-172.

共引文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部