期刊文献+

基于改进DBSCAN和距离共识评估的分段点云去噪方法 被引量:6

Section Point Cloud Denoising Method Based on Enhanced DBSCAN and Distance Consensus Evaluation
原文传递
导出
摘要 针对点云数据中噪声点的剔除问题,提出了一种基于改进DBSCAN(density-based spatial clustering of applications with noise)算法的多尺度点云去噪方法。应用统计滤波对孤立离群点进行预筛选,去除点云中的大尺度噪声;对DBSCAN算法进行优化,减少算法时间复杂度和实现参数的自适应调整,以此将点云分为正常簇、疑似簇及异常簇,并立即去除异常簇;利用距离共识评估法对疑似簇进行精细判定,通过计算疑似点与其最近的正常点拟合表面之间的距离,判定其是否为异常,有效保持了数据的关键特征和模型敏感度。利用该方法对两个船体分段点云进行去噪,并与其他去噪算法进行对比,结果表明,该方法在去噪效率和特征保持方面具有优势,精确地保留了点云数据的几何特性。 A denoising method based on the improved DBSCAN(density-based spatial clustering of applications with noise)algorithm is proposed to address the problem of removing noise points in point cloud data.The statistical filtering method is applied to pre-screen isolated outliers and remove largescale noise from the point cloud.The DBSCAN algorithm is optimized to reduce computational time complexity and achieve adaptive parameter adjustment,thereby dividing the point cloud into normal clusters,suspected clusters and abnormal clusters,and immediately removing abnormal clusters.Distance consensus assessment is applied,and suspect clusters are further evaluated.By calculating the distance between the suspected point and its nearest normal point fitting surface,it is determined whether the suspected point is abnormal,effectively maintaining the key features of the data and model sensitivity.This approach outperforms other algorithms in denoising efficiency and feature retention by being implemented on hull point clouds,which ensures the integrity of the point cloud data's geometric properties.
作者 葛程鹏 赵东 王蕊 马庆华 Ge Chengpeng;Zhao Dong;Wang Rui;Ma Qinghua(School of Naval Architecture&Ocean Engineering,Jiangsu University of Science&Technology,Zhenjiang 212003,China;Jiangsu Hantong Wing Heavy Industry Co,Nantong 226010,China)
出处 《系统仿真学报》 CAS CSCD 北大核心 2024年第8期1800-1809,共10页 Journal of System Simulation
基金 江苏省研究生科研与实践创新计划项目(SJCX23_2205) 2023江苏省工业和信息产业转型升级项目(苏财工贸〔2023〕60号)。
关键词 点云去噪 点云数据 DBSCAN(density-based spatial clustering of applications with noise)聚类 距离共识评估 特征保持 point cloud denoising point cloud data DBSCAN(density-based spatial clustering of applications with noise)clustering distance consensus assessment feature preservation
  • 相关文献

参考文献11

二级参考文献66

  • 1毛方儒,王磊.三维激光扫描测量技术[J].宇航计测技术,2005,25(2):1-6. 被引量:142
  • 2贺美芳,周来水,神会存.散乱点云数据的曲率估算及应用[J].南京航空航天大学学报,2005,37(4):515-519. 被引量:27
  • 3孙红岩,孙晓鹏,李华.基于K-means聚类方法的三维点云模型分割[J].计算机工程与应用,2006,42(10):42-45. 被引量:24
  • 4孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1101
  • 5Li Zhongwei,Fu You.Gamma-distorted fringe image modeling and accurate gamma correction for fast phase measuring profilometry[J].Optics Letters,2011,36(2):154-156.
  • 6Xu Ying,Ekstrand Laura,Dai Junfei.Phase error compensation for three-dimensional shape measurement with projector defocusing[J].Appl Opt,2011,50(17):2578-2581.
  • 7Song J.Two-stage point-sampled model denoising by robust ellipsoid criterion and mean shift[C]∥2013 Int’l Conf on Intelligent System Design and Engineering Applications,Hong Kong:IEEE,2013:1581-1584.
  • 8Xiao Chunxia,Miao Yongwei,Liu Shu,et al.A dynamic balanced flow for filtering point-sampled geometry[J].The Visual Computer,2006,22(3):210-219.
  • 9Castillo E, Liang J, Zhao H. Point Cloud Segmentation and Denoising via Constrained Nonlinear Least Squares Normal Estimates [M]// Innovations for Shape Analysis. Germany: Springer Berlin Heidelberg, 2013: 283-299.
  • 10Dutta S, Banerjee S, Biswas P K, et al. Mesh Denoising Using Multi-scale Curvature-Based Saliency [M]// Computer Vision-ACCV 2014 Workshops. Germany: Springer International Publishing, 2014:507-516.

共引文献99

同被引文献55

引证文献6

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部