期刊文献+

基于Transformer-GRU网络的4D航迹预测 被引量:5

4D Trajectory Prediction Based on Transformer-GRU Network
在线阅读 下载PDF
导出
摘要 航空器的4D航迹预测作为基于航迹运行(TBO)的关键技术之一具有非常重要的意义。基于Transformer-GRU(T-GRU)网络,提出了一种新的航迹预测方法,结合Adamax优化器实现了4D航迹预测。利用Transformer网络的自注意力机制对输入序列进行建模,通过GRU网络获取时序数据的特征;对原始航迹数据进行重采样插值和中值滤波等预处理,以便消除数据缺失和异常值等对预测的影响;通过E E、E AT、E CT、E A等误差指标对实验结果进行评价,并与其他常用的航迹预测方法进行对比。研究结果表明:与传统深度学习方法相比,基于T-GRU网络的4D航迹预测模型在航迹预测中具有更高的准确性和鲁棒性。 The 4D trajectory prediction of aircraft is one of the key technologies based on trajectory-based operations(TBO),which has significant significance.Based on Transformer-GRU(T-GRU)network,a trajectory prediction method was proposed and 4D trajectory prediction was realized by combining with Adamax optimizer.Firstly,the self-attention mechanism of the Transformer network was used to model the input sequence,and the features of time-series data were obtained through the GRU network.Secondly,the original trajectory data was preprocessed by resampling interpolation and median filtering to eliminate the impact of data missing and outliers on prediction.Finally,the experimental results were evaluated through error indicators such as E E,E AT,E CT and E A,and compared with other commonly used trajectory prediction methods.The research results show that the proposed T-GRU network-based 4D trajectory prediction model has higher accuracy and robustness in trajectory prediction,compared with traditional deep learning methods.
作者 翟文鹏 宋一峤 张兆宁 ZHAI Wenpeng;SONG Yiqiao;ZHANG Zhaoning(College of Air Traffic Management,Civil Aviation University of China,Tianjin 300300,China)
出处 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第6期94-101,共8页 Journal of Chongqing Jiaotong University(Natural Science)
基金 国家自然科学基金民航联合基金重点项目(U2233209)。
关键词 交通工程 空中交通管理 TBO 4D航迹预测 深度学习 traffic engineering air traffic management TBO 4D trajectory prediction deep learning
  • 相关文献

参考文献4

二级参考文献42

  • 1肖靖,孙涛.新一代民用航空运输系统需要更加灵活高效的空中交通管理系统[J].空中交通管理,2006(1):7-10. 被引量:3
  • 2王大海.末端区域4D导引的水平轨迹计算方法[J].飞行力学,1996,14(3):27-33. 被引量:7
  • 3SLATTERY R A. Terminal area trajectory synthesis for air traffic control automation [ C ]// Proceedings of the American Control Conference. Seattle : IEEE Computer Society Press, 1995 : 1206-1210.
  • 4SLATTERY R, ZHAO Y. Trajectory synthesis for air traffic automation [ J ]. Journal of Guidance, Control, and Dynamics [J]. 1997, 20(2): 232-238.
  • 5BOLENDER M A, SLATER G L. Departure trajectory synthesis and the intercept problem[ C ] //AIAA Guidance Navigation and Control Conference. New Orleans: National Aeronautics and Space Administration, 1997: 444-454.
  • 6Eurocontrol Experimental Centre. User manual for the base of aircraft data (BADA) revision 3.6 [ OL/DB ]. http ://www. eurocontrol. int/eec/public/standard_page/ACE_bada_documents_36. html. 2008-12-15.
  • 7约翰·H·霍兰.隐秩序-适应性造就复杂性[M].上海:上海科技教育出版社,2000..
  • 8RUIZ S, PIERA M, POZO I. A medium term conflict detection and resolution system for terminal maneuvering area based on spatial data and 4D trajectories[J]. Transportation Research: Part C, 2013, 26 : 396-417.
  • 9HANCERLIOGULLARI G, RABADI G, AL-SALEM A H, et al. Greedy algorithms and metaheuristics for a multiple runway combined arrival-departure aircraft sequencing problem[J]. Journal of Air Transport Management, 2013, 32: 39-48.
  • 10ZuNIGA C A, PIERA M A, RUIZ S. A CD&CR causal model based on path shortening/path stretching techniques[ J ]. Transportation Research : Part C, 2013, 33: 238-256.

共引文献137

同被引文献75

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部