摘要
稳定配电网潮流分布、明确分布式电源的接入位置和容量是含分布式电源配电网优化运行的重要问题。提出一种基于深度强化学习算法的储能调控优化模型,实现分布式电源配置与用电负荷需求关系的匹配,从而稳定高渗透率下配电网的潮流分布。以线路损耗与电压波动性为损失函数,提出基于多目标遗传算法的分布式电源选址定容决策模型。在IEEE 14节点系统进行测试,结果表明该算法能够有效选择分布式电源的最佳接入位置和容量,在保证电压幅值不产生过大波动的同时,进一步降低了整体网络的线路损耗。
Stabilizing the power flow distribution in distribution networks and determining the connection locations and capacities of distributed generation are crucial issues in optimizing the operation of distribution networks with distributed generation.This paper proposes an energy storage scheduling and optimization model based on deep reinforcement learning(deep RL)to match the relationship between distributed energy resource allocation and electricity load demand,thereby stabilizing power flow distribution in distribution networks with high penetration rates.Using line losses and voltage fluctuations as the loss functions,the paper proposes a decision-making model for placement and sizing of distributed generation based on multi-objective genetic algorithm.Testing is conducted on the IEEE 14-bus system,and the results indicate that the algorithm can effectively select the optimal connection locations and capacities for distributed generation,reducing overall line losses while ensuring voltage amplitude remains stable.
作者
李童宇
武浩然
陈衡
刘涛
李国亮
LI Tongyu;WU Haoran;CHEN Heng;LIU Tao;LI Guoliang(North China Electric Power University,Beijing 102206,China;Beijing Guo Dian Tong Network Technology Co.,Ltd.,Beijing 100086,China;State Grid Zaozhuang Power Supply Company,Zaozhuang,Shandong 277000,China)
出处
《浙江电力》
2024年第6期41-51,共11页
Zhejiang Electric Power
基金
国家电网有限公司科技项目(5108-202218280A-2-142-XG)。
关键词
分布式电源
深度强化学习
储能优化
多目标遗传算法
选址定容
distributed generation
deep RL
energy storage optimization
multi-objective genetic algorithm
placement and sizing