期刊文献+

关于有限群的自中心的非亚循环子群的TI-性和次正规性 被引量:1

On the TI-property and subnormality of self-centralizing non-metacyclic subgroups of a finite group
在线阅读 下载PDF
导出
摘要 对于自中心的非亚循环子群,本文把它们的TI-性和次正规性结合在一起证明了:如果有限群G的每个自中心的非亚循环子群皆为TI-子群或次正规子群,则G的每个非亚循环子群皆次正规于G,而且这类群是可解的.此外,本文还证明了如果有限群G的每个自中心的非亚循环子群皆为TI-子群,则G的每个自中心的非亚循环子群皆在G中正规. For self-centralizing non-metacyclic subgroups,we combine the TI-property and subnormality together to prove that if every self-centralizing non-metacyclic subgroup of a finite group G is a TI-subgroup or a subnormal subgroup,then every non-metacyclic subgroup of G is subnormal in G and such a group G is solvable.Moreover,we show that if every self-centralizing non-metacyclic subgroup of a finite group G is a TI-subgroup then every self-centralizing non-metacyclic subgroup of G is normal in G.
作者 李娜 史江涛 LI Na;SHI Jiangtao(College of Mathematics and Statistics,Zaozhuang University,Zaozhuang 277160,China;School of Mathematics and Information Sciences,Yantai University,Yantai 264005,China)
出处 《纯粹数学与应用数学》 2024年第2期212-217,共6页 Pure and Applied Mathematics
基金 国家自然科学基金(11761079) 山东省自然科学基金(ZR2017MA022).
关键词 非亚循环子群 自中心 TI-子群 次正规子群 可解 non-metacyclic subgroup self-centralizing TI-subgroup subnormal subgroup solvable
  • 相关文献

参考文献2

二级参考文献7

  • 1Zassenhaus, H. A.: A group-theoretic proof of a theorem of Maclagan-Wedderburn. Proc. Glasgow Math. Assoc., 1, 53-63 (1952)
  • 2Li, S. R.: The structure of NC-groups. J. Algebra, 241, 611-619 (2001)
  • 3Walls, G.: Trivial intersection groups. Archiv der Mathematik, 32, 1-4 (1979)
  • 4Li, S. R.: Finite non-nilpotent groups all of whose second maximal subgroups are TI-subgroups. Royal Irish Academy, 100A(1), 65-71 (2000)
  • 5Robinson, D. J. S.: A Course in the Theory of Groups, Springer-Verlag, Berlin, Heidelberg, New York, 1982
  • 6Huppert, B., Endliche Gruppen I, Springer-Verlag, Berlin, Heidelberg, New York, 1967
  • 7Li, S. R.: On two theorems of finite Solvable groups. Acta Mathematica Sinica, English Series, 21(4), 797-802(2005)

共引文献4

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部