期刊文献+

关于整数矩阵除数函数余项的二次积分均值

Integral mean square estimation for the error term involving divisor functions of integer matrices
在线阅读 下载PDF
导出
摘要 整数矩阵表法个数的渐近分布问题是解析数论中的重要研究课题,受到日益增长的关注.设t_(3)^((2))(n)是整数矩阵环M_(2)(Z)中形式为C=A_(1)A_(2)A_(3)且|C|=n的矩阵表法个数的求和函数,△_(2,3)^(*)(x)是关于t_(3)^((2))(n)的渐近公式中的余项.利用经典的解析方法和黎曼zeta函数的良好性质,本文研究了整数矩阵除数函数t_(3)^((2))(n)在无平方因子数集上的分布问题,并得到了余项△_(2,3)^(*)(x)的二次积分均值的上界估计. The asymptotic behaviour of the number of representations of integer matrices is an important topic in analytic number theory,and has received increasing attention.Let t_(3)^((2))(n) be a summatory function of the number of representations of matrices from the ring of integer matrices M_(2)(Z) in the form C=A_(1)A_(2)A_(3 )with|C|=n.Denote by △_(2,3)^(*)(x) the error term of asymptotic formula related to t_(3)^((2))(n).Applying the classical analytic method and nice properties of the Riemann zeta function,this paper investigates the distribution of divisor functions of integer matrices t_(3)^((2))(n) on the square-free numbers and obtains the upper bounds for the integral mean square of error terms△_(2,3)^(*)(x).
作者 于若彤 劳会学 杨晓伟 YU Ruotong;LAO Huixue;YANG Xiaowei(School of Mathematics and Statistics,Shandong Normal University,Jinan 250358,China)
出处 《纯粹数学与应用数学》 2024年第2期203-211,共9页 Pure and Applied Mathematics
基金 国家自然科学基金(12201363)。
关键词 余项 无平方因子数 整数矩阵除数函数 error term square-free number divisor function of integer matrix
  • 相关文献

参考文献4

二级参考文献46

  • 1L GuangShi School of Mathematics,Shandong University,Jinan 250100,China.On an open problem of Sankaranarayanan[J].Science China Mathematics,2010,53(5):282-287. 被引量:3
  • 2Pierre Deligne.La conjecture de Weil. I[J]. Publications Mathématiques de L’Institut des Hautes Scientifiques . 1974 (1)
  • 3Deligne P.La conjecture de Weil I. Inst Hautes Etudes Sci Publ Math . 1974
  • 4Rankin R A.Contributions to the theory of Ramanujan‘s functionτ(n) and similar arithmetical functionsⅡ. The order of the Fourier coefficients of integral modular forms. Proc Cambridge Phil Soc . 1939
  • 5Selberg A.Bemerkungen uber eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbun- den ist. Arch Math Naturvid . 1940
  • 6Ivic A.Large values of certain number-theoretic error terms. Acta Arith . 1990
  • 7Ivic A,Matsumoto K,Tanigawa Y.On Riesz means of the coefficients of the Rankin-Selberg series. Math Proc Camb Phil Soc . 1999
  • 8Ivic A.On the fourth moment in the Rankin-Selberg problem. ArXiv: math/0701912 .
  • 9Ivic A.The Riemann Zeta-function. . 2003
  • 10Tsang K M.Higher-power moments ofΔ(x), E(t) and P(x). Proc London Math Soc . 1992

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部