摘要
Mg-Y cast alloy shows excellent ductility(elongation to failure>15%)compared with pure Mg and commercial Mg cast alloys.By monitoring the microstructure evolution during an in situ tensile test of a Mg-2.5 wt%Y alloy,we identify the activation of prismatic<c>slip,which is rare in Mg.Synchrotron X-ray micro-beam Laue diffraction(μ-Laue)and transmission electron microscopy revealed the morphology of prismatic<c>slip bands and individual<c>dislocations.Density functional theory and molecular dynamics calculations indicate that solute Y can significantly reduce the stacking fault energy(SFE)along<c>direction on prismatic plane in Mg lattice and thus facilitate the nucleation of<c>dislocations during deformation.The presence of free<c>dislocations in the Mg lattice can also lead to nucleation of{10–12}twins even under unfavorable geometric conditions.
基金
financially supported by the National Natural Science Foundation of China (Nos. 51671127, 51631006, 51971168)
sponsored by the Shanghai Rising-Star Program
supported by the United States Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02–06CH11357