期刊文献+

基于SSA-RF的SAR图像变化检测方法

SAR image change detection method based on SSA-RF
在线阅读 下载PDF
导出
摘要 为了提高合成孔径雷达(Synthetic Aperture Radar, SAR)图像变化检测精度,提出一种基于麻雀搜索算法优化随机森林(Sparrow Search Algorithm-Random Forest, SSA-RF)的SAR图像变化检测方法。该方法首先通过对数比值法得到两时相SAR图像的差异图,然后在差异图预处理后进行层次模糊C均值(Fuzzy C-means, FCM)聚类预检测,生成有效标签。最后,利用标签训练随机森林二次检测模型,并采用麻雀搜索算法对随机森林进行参数优化构建性能稳定的分类器,得到差异图变化类与不变化类的分类结果,从而实现SAR图像的变化检测。实验结果表明,该方法较好地保留了变化区域信息,有效提高了SAR图像的变化检测精度。 In order to improve the accuracy of the Synthetic Aperture Radar(SAR)image change detection,a Sparrow Search Algorithm-Random Forest(SSA-RF)based SAR image change detection method is proposed.In this method,the difference maps of two-phase SAR images are obtained by the logarithmic ratio method.After the difference maps are preprocessed,the Hierarchical Fuzzy C-means(FCM)cluster pre-detection is carried out to generate valid labels.Finally,the tags are used to train the random forest secondary detection model,and the sparrow search algorithm is used to optimize the parameters of the random forest to build a stable classifier,and the classification results of the change class and the unchanged class of the difference maps are obtained,so as to realize the change detection of SAR images.Experiment results show that the method preserves the change region information well and improves the accuracy of SAR image change detection effectively.
作者 唐浩漾 吝张茹 秦波 李文杰 TANG Haoyang;LIN Zhangru;QIN Bo;LI Wenjie(School of Automation,Xi’an University of Posts and Telecommunications,Xi’an 710121,China;Xi’an Advanced Control and Intelligent Processing Key Laboratory,Xi’an 710121,China)
出处 《西安邮电大学学报》 2024年第1期96-102,共7页 Journal of Xi’an University of Posts and Telecommunications
基金 西安市科技局人工智能技术公关项目(21RGZN0020)。
关键词 合成孔径雷达图像 对数比值法 层次模糊C均值 麻雀搜索算法 随机森林模型 synthetic aperture radar image logarithmic ratio method hierarchical fuzzy C-means sparrow search algorithm random forest model
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部