期刊文献+

基于SSA-BPNN的信息化系统故障诊断

Information System Fault Diagnosis Based on SSA-BPNN
在线阅读 下载PDF
导出
摘要 为了提高信息化系统故障诊断的精度,避免BP神经网络陷入局部最优并且提高收敛速度,提出一种麻雀搜索算法改进BP神经网络的信息化故障诊断模型。运用麻雀搜索算法优化选择BP神经网络的初始权值和阈值。与PSO-BPNN和GA-BPNN相比,SSA-BPNN进行信息化系统故障诊断具有更强的寻优能力和故障诊断精度,为信息化系统故障诊断提供了新的方法。 In order to improve the accuracy of information system fault diagnosis,avoiding BP neural network fall into local optimization and improve the rate of convergence,an information fault diagnosis model based on BP neural network improved by sparrow search algorithm is proposed.Sparrow search algorithm is applied to optimize the initial weights and thresholds of BP neural network.Compared with PSO-BPNN and GA-BPNN,SSA-BPNN has better optimization ability and fault diagnosis precision,providing a new method for fault diagnosis of information system.
作者 董贇 邓卓茗 DONG Yun;DENG Zhuoming(Guangxi Power Grid Limited Liability Company Information Center,Nanning 530023,China)
出处 《微型电脑应用》 2024年第1期220-223,共4页 Microcomputer Applications
关键词 神经网络 麻雀搜索算法 信息化系统 故障诊断 neural network sparrow search algorithm information system fault diagnosis
  • 相关文献

参考文献8

二级参考文献69

  • 1匡芳君,张思扬,徐蔚鸿.改进混沌粒子群的动态模糊神经网络参数优化及应用[J].微电子学与计算机,2015,32(1):48-53. 被引量:7
  • 2杨余旺,杨静宇,孙亚民.分布式拒绝服务攻击的实现机理及其防御研究[J].计算机工程与设计,2004,25(5):657-660. 被引量:15
  • 3VAPNIK V N. Statistical learning theory [ M ]. New York: John Wiley & Sons, 1995.
  • 4SUYKENS J A K, VANDEWALLE J. Least squares sup- port vector machine classifiers [ J ]. Neural Processing Letters, 1999, 9(3): 293-300.
  • 5BRERETON R G, LLOYDA G R. Support vector ma- chines for classification and regression [ J ]. Analyst, 2010, 135(2), 230-267.
  • 6HYVARINEN A. Fast and robust fixed-point algo- rithms for independent component analysis [ J 1 - IEEE Transactions of Neural Networks, 1999, 10 (3) : 626- 634.
  • 7JIAO L CI-I, BO L F, WANG L. Fast sparse approxima- tion for least squares support vector machine [ J ]. IEEE Transaction on Neural Networks, 2007, 18 ( 3 ) : 685 -697.
  • 8XIA X L, JIAO W D, LI K, et al. A novel sparse least squares support vector machines [ J ]. Mathematical Prob- lems in Engineering, 2013: 1-10.
  • 9ZHANG L, WANG Z, ZHAN S. Short-time fault prediction of mechanical rotating parts on the basis of fuzzy-grey optimizing method [J]. Mechanical Systems and Signal Processing, 2007, 21:856-865.
  • 10YANG H, ZHOU Y, LIU H. Chaos optimization SVR algorithm with application in prediction of regional logistics demand[C]// Proceedings of the 1st International Conference Advances in Swarm Intelligence, LNCS 6146. Berlin: Springer-Verlag, 2010: 58-64.

共引文献203

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部