摘要
针对日益增加的大气CO_(2)含量,膜技术被认为是一种有前景的碳捕集策略,其中亲CO_(2)分离膜已经展示出显著的应用潜力,特别是在CO_(2)/轻质气体分离方面。以聚环氧乙烷(PEO)为代表的CO_(2)亲和材料,因其与CO_(2)的特殊偶极-四极矩相互作用而吸引了广泛的研究关注。在此,我们报道了一种简便的一步合成方案,通过原位聚合高度柔性的小分子PEO来克服其高结晶度和低机械强度的局限性。得益于短链PEO与聚合物基体之间的复杂链缠绕,使线性PEO的负载高达90%(质量分数)。因此,分离性能轻松超过了著名的分离上限。此外,高结构稳定性使得分离膜在高进料压力(高达20 bar)下表现出更好的CO_(2)渗透系数和气体选择性。本研究同时改善了全聚合物膜的机械性能和气体分离性能,在工业碳捕集和气体净化领域展现出显著潜力。
Membrane technology has been considered a promising strategy for carbon capture to mitigate the effects of increasing atmospheric CO_(2) levels because CO_(2)-philic membranes have demonstrated significant application potential,especially,for CO_(2)/light gas separation.In this regard,poly(ethylene oxide)(PEO),which is a representative CO_(2)-philic material,has attracted extensive research attention owing to its specific dipole-quadrupole interaction with CO_(2).Herein,we report a facile one-step synthesis protocol via the in situ polymerization of highly flexible polyethylene glycol to overcome the limitations of PEO,including high crystallinity and poor mechanical strength.The robust structure derived from intricate entanglements between short PEO chains and the polymer matrix enables an extremely high loading of linear polyethylene glycol(up to 90 wt%).Consequently,the separation performance easily surpasses the upper-bound limit.Moreover,the high structural stability allows for the concurrent increase of CO_(2) permeability and CO_(2)/light gas selectivity at high feed pressure(up to 20 bar(1 bar=105 Pa)).This study provides a promising strategy to simultaneously improve the toughness and gas separation properties of all-polymeric membranes,demonstrating significant potential for industrial carbon capture and gas purification.
作者
朱斌
赫羴珊
吴亚东
李松伟
邵路
Bin Zhu;Shanshan He;Yadong Wu;Songwei Li;Lu Shao(MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage,State Key Laboratory of Urban Water Resource and Environment,School of Chemistry and Chemical,Harbin Institute of Technology,Harbin 150001,China;Key Laboratory of Materials Processing and Mold(Zhengzhou University),Ministry of Education,National Engineering Research Center for Advanced Polymer Processing Technology Department of Chemical Engineering,Zhengzhou University,Zhengzhou 450002,China)
出处
《Engineering》
SCIE
EI
CAS
CSCD
2023年第7期220-228,I0009,共10页
工程(英文)
基金
supported by the National Natural Science Foundation of China(21878062,21878062,and 22111530113)
the Natural Science Foundation of Heilongjiang Province for Distinguished Young Scholars(JQ2020B001)
Heilongjiang Touyan Team(HITTY20190033)
Fundamental Research Funds for the Central Universities
State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(2020DX02)。