期刊文献+

基于潜在因子多样性的非负矩阵分解协同过滤模型

A collaborative filtering model of non-negative matrix factorization based on diversity of latent factors
在线阅读 下载PDF
导出
摘要 基于非负矩阵分解的协同过滤模型在高维稀疏数据的预测和填补上十分有效,该模型具有推荐个性化、有效利用其他相似用户回馈信息的优点,但也存在预测精度较低等不足。针对用户或项目在不同情景下的评分差异性,提出了一种改进的基于潜在因子多样性的非负矩阵分解的协同过滤模型。该模型充分考虑在不同情境下,用户和项目潜在特征矩阵的多样性,在模型的训练中,采用了单元素非负乘法更新规则和交替方向法,保证了目标矩阵的非负性,且提高了模型的收敛率。在真实的工业数据集上的实验结果表明,相比于经典的非负矩阵分解模型,该模型的预测精度有了明显提高。 A collaborative filtering model of non-negative matrix factorization based on diversity of latent factors is effective in predicting high dimension and sparse matrix.This model can recommend personally and utilize the feedback information from other similar users effectively.However,it has the disadvantage of low prediction accuracy.Due to the diversity of ratings for users or items under different circumstances,a collaborative filtering model based on non-negative matrix factorization was proposed.The model considered the diversity of latent characteristic matrices for users and items.The single-element non-negative multiplication update rule and the principle of alternate direction method were integrated in the training of the model,which not only guaranteed the non-negativity of the target matrix,but also improved the convergence rate of the models.Finally,experiments were carried out on real industrial data sets.The experimental results show that the prediction accuracy of the proposed model is higher than that of the classical non-negative matrix factorization model.
作者 陶名康 王新利 宋燕 TAO Mingkang;WANG Xinli;SONG Yan(College of Science,University of Shanghai for Science and Technology,Shanghai 200093,China;School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《上海理工大学学报》 CAS CSCD 北大核心 2023年第2期162-170,共9页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(62073223) 上海市自然科学基金资助项目(18ZR1427100)。
关键词 协同过滤 特征矩阵多样性 非负矩阵分解 非负乘法更新 交替方向法 collaborative filtering diversity of latent characteristic matrix non-negative matrix factorization non-negative multiplication updating alternate direction method
  • 相关文献

参考文献11

二级参考文献121

共引文献448

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部