期刊文献+

求解旅行商问题的波动温控模拟退火算法 被引量:20

A simulated annealing algorithm with wave temperature control for the traveling salesman problem
原文传递
导出
摘要 针对传统模拟退火算法在求解旅行商问题时运行时间长,易陷入局部最优,且随着问题规模的增大缺陷愈发明显的问题,对传统算法的内循环过程和退火机制进行改进,使得内循环的搜索强度根据温度的变化自适应调整,同时提出波动温度控制机制,使得算法在保持温度幅值递减的总趋势下实现多次升温过程,增强求解效果,缩短求解时间,并通过TSPLIB数据库提供的大量实例得以验证. In view of the fact that the traditional simulated annealing algorithm has a long running time,easily been trapped in local optimum in solving the traveling salesman problem,especially the defects become more obvious with the increase of the problem scale,the inner loop and annealing mechanism of the traditional algorithm are improved,so that the search strength of the inner loop can be adjusted adaptively according to the change of temperature.At the same time,a fluctuation temperature control mechanism is proposed,so that the algorithm can realize multiple heating processes while maintaining the general trend of decreasing in temperature amplitude,which enhances the solution effect and shortens the solution time.It is verified by a large number of examples from the TSPLIB database.
作者 陈晟宗 张纪会 于守水 郝为建 CHEN Sheng-zong;ZHANG Ji-hui;YU Shou-shui;HAO Wei-jian(School of Automation,Qingdao University,Qingdao 266071,China;Shandong Key Laboratory of Industrial Control Technology,Qingdao 266071,China;Qingdao Port International Co.,Ltd.,Qingdao 266071,China)
出处 《控制与决策》 EI CSCD 北大核心 2023年第4期911-920,共10页 Control and Decision
基金 国家自然科学基金项目(61673228,62072260) 青岛市科技局计划项目(21-1-2-16-zhz).
关键词 模拟退火算法 波动温控 自适应内循环搜索 TSPLIB 旅行商问题 simulated annealing algorithm wave temperature control adaptive inner loop search TSPLIB the traveling salesman problem
  • 相关文献

参考文献17

二级参考文献165

  • 1陈华根,吴健生,王家林,陈冰.模拟退火算法机理研究[J].同济大学学报(自然科学版),2004,32(6):802-805. 被引量:148
  • 2陈小刚,林大键,孙国良.模拟退火法及其收敛性[J].光电工程,1993,20(3):12-18. 被引量:3
  • 3孙力娟,王良俊,王汝传.改进的蚁群算法及其在TSP中的应用研究[J].通信学报,2004,25(10):111-116. 被引量:38
  • 4HUANG Lan , ZHOU Chunguang and WANG Kangping(College of Computer Science and Technology, Jilin University, Changchun 130012, China).Hybrid ant colony algorithm for traveling salesman problem[J].Progress in Natural Science:Materials International,2003,13(4):295-299. 被引量:16
  • 5高海昌,冯博琴,朱利b.智能优化算法求解TSP问题[J].控制与决策,2006,21(3):241-247. 被引量:123
  • 6王宇平,李英华.求解TSP的量子遗传算法[J].计算机学报,2007,30(5):748-755. 被引量:72
  • 7范晔.现代启发式作业排序算法研究及其对比分析[M].北京,2002..
  • 8J Kennedy,R C Eberhart. Particle swarm optimization[A].in: Proceedings of the IEEE International Joint Conference on Neural Networks [ C ]. Piscataway, NJ: IEEE Service Center, IEEE Press, 1995. 1942 - 1948.
  • 9Qingyun Yang,Jigui sun, Juyang Zhang, Chunjie Wang.A hybrid discrete particle swarm algorithm for open-shop problems [A]. Proceedings of the 6th International Conference on Simulated Evolution And Learning (SEAL 2006) [ C]. Hefei, China, LNCS 4247,2006. 158 - 165.
  • 10K Rameshkumar, R K Suresh, K M Mohanasundaram. Discrete particle swarm optimization (DPSO) algorithm for permutation flowshop scheduling to minimize makspan[ A ]. In: Proc. ICNC 2005 [C]. Changsha, China, LNCS 3612,2005.572 - 581.

共引文献960

同被引文献190

引证文献20

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部