期刊文献+

基于金融领域的因果事件抽取算法研究 被引量:1

Research on causal event extraction algorithm based on financial field
在线阅读 下载PDF
导出
摘要 金融领域文本往往包含大量因果信息,对金融文本进行信息抽取,可以帮助获取大量含有因果关系的事件对,进而更好地应用在各个下游任务中。通过构建金融领域的因果标注数据集,并在BERT模型的基础上进行改进,提出了pipeline结构的因果事件抽取模型PUBERT,获得了较好的抽取效果,对相关抽取研究具有一定的参考价值。 Text in the financial field often contains a large amount of causal information.Information extraction of financial text can help us obtain a large number of event pairs with causal relationships,and then apply them to various downstream tasks.This work proposes pipeline structured causal event extraction model PUBERT by building a causal annotation dataset in the finan⁃cial field and improving on the BERT model,and obtains a good extraction effect,which has certain reference value for relevant ex⁃traction research.
作者 席建文 Xi Jianwen(School of Electronic Information,Southwest Minzu University,Chengdu 610041)
出处 《现代计算机》 2023年第3期97-101,107,共6页 Modern Computer
基金 西南民族大学中央高校基本科研业务费专项资金项目(2021NYYXS77)。
关键词 金融领域 信息抽取 因果关系 financial field information extraction causal relationship
  • 相关文献

参考文献1

二级参考文献20

  • 1Ahn D. The Stages of Event Extraction//Proc of the COLING-ACL Workshop on Annotating and Reasoning about Time and Events. Sydney, Australia, 2006 : 1 - 8.
  • 2Surdeanu M, Harabagiu S, Williams J, et al. Using Predicate-Argu- ment Structures for Information Extraction//Proc of the 41st Annual Meeting on Association for Computational Linguistics. Sapporo, Japan, 2003:8-15.
  • 3Girju R. Automatic Detection of Causal Relations for Question Answering// Proc of the 41 st ACL Workshop on Multilingual Summarization and Question Answering. Sapporo, Japan, 2003:76 -83.
  • 4Filatova E, Hatzivassiloglou V. Event-Based Extractive Summarization // Proc of ACL Workshop on Summarization. Barcelona, Soain, 2004:104-111.
  • 5Pechsiri C, Kawtrakul A. Mining Causality from Texts for Question Answering System. IEICE Trans on Information and Systems, 2007, 90(10) : 1523 -1533.
  • 6Khoo C, Kornfilt J, Oddy R, et al. Automatic Extraction of Cause- Effect Information from Newspaper Text without Knowledge-Based Inferencing. Literary and Linguistic Computing, 1998, 13(4) : 177- 186.
  • 7Joskowicz L, Ksiezyck T, Grishman R. Deep Domain Models for Discourse Analysis//Proc of the Annual AI Systems in Government Conference. Washington D C, USA, 1989:195 -200.
  • 8Kaplan R, Berry-Rogghe G. Knowledge-Based Acquisition of Causal Relationships in Text. Knowledge Acquisition, 1991,3 (3) : 317 - 337.
  • 9Garcia D. COATIS, an NLP System to Locate Expressions of Actions Connected by Causality Links // Proc of the 10th European Workshop on Knowledge Acquisition, Modeling and Management. Catalonia, Spain, 1997 : 347 - 352.
  • 10Inui T, Inui K, Matsumoto Y. What Kinds and Amounts of Causal Knowledge Can Be Acquired from Text by Using Connective Markers as Clues? Lecture Notes in Artificial Intelligence, 2003 : 280 - 193.

共引文献25

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部