期刊文献+

Behavior of solutions to a Petrovsky equation with damping and variable-exponent sources 被引量:2

原文传递
导出
摘要 This paper deals with the following Petrovsky equation with damping and nonlinear sources:utt+△^(2)u-M(||■u||2^(2))△ut+|ut|^(m(x)-2)ut=|u|^(p(x)-2)u under initial-boundary value conditions,where M(s)=a+b sγis a positive C 1 function with the parameters a>0,b>0,γ≥1,and m(x)and p(x)are given measurable functions.The upper bound of the blow-up time is derived for low initial energy by the differential inequality technique.For m(x)≡2,in particular,the upper bound of the blow-up time is obtained by the combination of Levine's concavity method and some differential inequalities under high initial energy.In addition,we discuss the lower bound of the blow-up time by making full use of the strong damping.Moreover,we present the global existence of solutions and an energy decay estimate by establishing some energy estimates.
出处 《Science China Mathematics》 SCIE CSCD 2023年第2期285-302,共18页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant No.12071391)。
  • 相关文献

同被引文献2

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部