期刊文献+

Artificial neural network-based one-equation model for simulation of laminar-turbulent transitional flow 被引量:2

在线阅读 下载PDF
导出
摘要 A mapping function between the Reynolds-averaged Navier-Stokes mean flow variables and transition intermittency factor is constructed by fully connected artificial neural network(ANN),which replaces the governing equation of the intermittency factor in transition-predictive Spalart-Allmaras(SA)-γmodel.By taking SA-γmodel as the benchmark,the present ANN model is trained at two airfoils with various angles of attack,Mach numbers and Reynolds numbers,and tested with unseen airfoils in different flow states.The a posteriori tests manifest that the mean pressure coefficient,skin friction coefficient,size of laminar separation bubble,mean streamwise velocity,Reynolds shear stress and lift/drag/moment coefficient from the present two-way coupling ANN model almost coincide with those from the benchmark SA-γmodel.Furthermore,the ANN model proves to exhibit a higher calculation efficiency and better convergence quality than traditional SA-γmodel.
出处 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第1期50-57,共8页 力学快报(英文版)
基金 the financial supports provided by the National Natural Science Foundation of China(Nos.91852112 and 11988102)。
  • 相关文献

同被引文献40

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部