期刊文献+

Fault diagnosis of control moment gyroscope based on a new CNN scheme using attention-enhanced convolutional block 被引量:4

原文传递
导出
摘要 Control moment gyroscope(CMG)is a typical attitude control system component for satellites and mobile robots,and the online fault diagnosis of CMG is crucial because it determines the stability and accuracy of the attitude control system.This paper develops a data-driven CMG fault diagnosis scheme based on a new CNN method.In this design,seven types of fault signals are converted into spectrum datasets through short-time Fourier transformation(STFT),and a new CNN network scheme called AECB-CNN is proposed based on attention-enhanced convolutional blocks(AECB).AECB-CNN can achieve high training accuracy for the CMG fault diagnosis datasets under different sliding window parameters.Finally,simulation results indicate that the proposed fault diagnosis method can achieve an accuracy of nearly 95%in 1.28 s and 100%in 2.56 s,respectively.
出处 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第11期2605-2616,共12页 中国科学(技术科学英文版)
基金 supported by the Science Center Program of the National Natural Science Foundation of China(Grant No.62188101) the National Natural Science Foundation of China(Grant Nos.61833009,61690212,51875119,61903219,and 62073183) the Heilongjiang Touyan Team the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2019B030302001)
  • 相关文献

参考文献6

二级参考文献14

共引文献36

同被引文献33

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部