期刊文献+

Remediation of arsenic-contaminated paddy field by a new iron oxidizing strain(Ochrobactrum sp.)and iron-modified biochar 被引量:3

原文传递
导出
摘要 Iron-oxidizing strain(FeOB)and iron modified biochars have been shown arsenic(As)reme-diation ability in the environment.However,due to the complicated soil environment,few field experiment has been conducted.The study was conducted to investigate the potential of iron modified biochar(BC-FeOS)and biomineralization by a new found FeOB to remediate As-contaminated paddy field.Compared with the control,the As contents of G_(B)(BC-FeOS),G_(F)(FeOB),G_(FN)(FeOB and nitrogen fertilizer),G_(BF)(BC-FeOS and FeOB)and G_(BFN)(BC-FeOS,FeOB and nitrogen fertilizer)treatments in pore water decreased by 36.53%-80.03%and the microbial richness of iron-oxidizing bacteria in these treatments increased in soils at the rice maturation stage.The concentrations of available As of G_(B),G_(F),G_(FN),G_(BF) and G_(BFN) at the tillering stage were significantly decreased by 10.78%-55.48%.The concentrations of non-specifically absorbed and specifically absorbed As fractions of G_(B),G_(F),G_(FN),G_(BF) and G_(BFN) in soils were decreased and the amorphous and poorly crystalline hydrated Fe and Al oxidebound fraction was increased.Moreover,the As contents of G_(B),G_(F),G_(FN),G_(BF) and G_(BFN) in rice grains were significantly decreased(*P<0.05)and the total As contents of G_(FN),G_(BF) and G_(BFN) were lower than the standard limit of the National Standard for Food Safety(GB 2762-2017).Compared with the other treatments,G_(BFN) showed the greatest potential for the effective remediation of As-contaminated paddy fields.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第5期411-421,共11页 环境科学学报(英文版)
基金 This work was supported by the National Natural Science Foundation of China(No.41771512) the Dean’s Research Fund 2020/21(Project code:04626)of the Education University of Hong Kong.
  • 相关文献

参考文献4

二级参考文献83

  • 1刘荣厚,郝元元,叶子良,王远远,沈飞,武丽娟.沼气发酵工艺参数对沼气及沼液成分影响的实验研究[J].农业工程学报,2006,22(S1):85-88. 被引量:84
  • 2Abedin, M. J., Cresser, M. S., Meharg, A. A., Feldmann, J., Cotter-Howells, J., 2002. Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environ. Sci. Technol. 36(5), 962-968.
  • 3Allen, S. E., 1989. Chemical Analysis of Ecological Materials (2nd ed.). Black- well Science, Oxford.
  • 4Blute, N. K., Brabander, D. J., Hemond, H. F., Sutton, S. R., Newville, M. G., Rivers, M. L., 2004. Arsenic sequestration by ferric iron plaque on cattail roots. Environ. Sci. Technol. 38, 6047~077.
  • 5Caetano, M., Vale, C., 2002. Retention of arsenic and phosphorus in iron-rich concretions of Tagus salt marshes. Mad. Chem. 79(3-4), 261-271.
  • 6Chen, C. C., Dixon, J. B., Turner, E T., 1980. Iron coatings on rice roots: morphology and models of development. Soil Sci. Soc. Amer. J. 44(5), 1113-1119.
  • 7Colmer, T. D., 2003a. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.). Ann. Bot. 91(2), 301-309.
  • 8Colmer, T. D., 2003b. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 26(1), 17-36.
  • 9Fitz, W. J., Wenzel, W. W., 2002. Arsenic transformation in the soil-rhizosphere- plant system: fundamentals and potential application to phytoremediation. J. Biotechnol. 99(3), 259-278.
  • 10Hansel, C. M., Fendorf, S., Sutton, S., Newville, M., 2001. Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environ. Sci. Technol. 35(19), 3863-3868.

共引文献61

同被引文献56

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部