摘要
Freshwater reservoirs are regarded as an important anthropogenic source of methane(CH_(4))emissions. The temporal and spatial variability of CH_(4) emissions from different reservoirs results in uncertainty in the estimation of the global CH_(4) budget. In this study, surface water CH_(4) concentrations were measured and diffusive CH_(4) fluxes were estimated via a thin boundary layer model in a temperate river–reservoir system in North China, using spatial(33 sites) and temporal(four seasons) monitoring;the system has experienced intensive aquaculture disturbance. Our results indicated that the dissolved CH_(4) concentration in the reservoir ranged from 0.07 to 0.58 μmol/L, with an annual average of 0.13 ± 0.10 μmol/L, and the diffusive CH_(4) flux across the water–air interface ranged from 0.66 to 3.61 μmol/(m^(2)·hr),with an annual average of 1.67 ± 0.75 μmol/(m^(2)·hr). During the study period, the dissolved CH_(4) concentration was supersaturated and was a net source of atmospheric CH_(4) . Notably,CH_(4) concentration and diffusive flux portrayed large temporal and spatial heterogeneity.The river inflow zone was determined to be a hotspot for CH_(4) emissions, and its flux was significantly higher than that of the tributary and main basin;the CH_(4) flux in autumn was greater than that in other seasons. We also deduced that the CH_(4) concentration/diffusive flux was co-regulated mainly by water temperature, water depth, and water productivity(Chla, trophic status). Our results highlight the importance of considering the spatiotemporal variability of diffusive CH_(4) flux from temperate reservoirs to estimate the CH_(4) budget at regional and global scales.
基金
supported by the National Nature Science Foundation of China(Nos.41771516,41771122)
the Bureau of Luanhe Diversion Project of the Haihe River Water Conservancy Commission,Ministry of Water Resources of China and Tianjin Water Affairs Bureau project(Nos.HYGP-2019-C-130,TJGC-2019-C-060)。