期刊文献+

柔性关节柔性连杆机械臂的动力学建模 被引量:5

DYNAMIC MODELING OF A FLEXIBLE-LINK FLEXIBLE-JOINT MANIPULATOR
在线阅读 下载PDF
导出
摘要 柔性关节柔性连杆机械臂是典型的非线性、强耦合、欠驱动系统,其控制难度高.对于这类系统,选择合适的动力学模型进行控制器设计对于提高控制性能是非常有帮助的.为此,研究了具有柔性关节柔性连杆机械臂的动力学建模问题,并提出了一种改进的建模方法.在该方法中,连接柔性连杆的柔性关节首先被简化为刚性关节和柔性连杆的弹性约束边界.然后,根据结构动力学理论、哈密顿原理和假设模态法建立系统的刚柔耦合动力学方程.相较于将柔性关节简化为刚性关节和扭簧的传统处理方式,所采用的简化方式一方面可以降低系统的自由度,另一方面可以得到更适合控制器设计的动力学模型.最后,通过数值仿真验证了本文方法的有效性和优势. The flexible-link flexible-joint(FLFJ)manipulator is typically a nonlinear,strong coupling,and under-actuated system being quite difficult to be well controlled.To improve control performance,proper selection of system's dynamic model is of utmost importance.In this paper,the dynamic modeling problem of FLFJ manipulators is studied,and a modified modeling method is proposed.In this method,the flexible joint connecting a flexible link is no longer simplified as a rigid joint and a torsion spring,but simplified as a rigid joint and an elastic constraint of the flexible link.Then,according to structural dynamics,Hamilton,s principle,and the Assumed Modes Method,the rigid-flexible coupling dynamic equation is established.Compared to the traditional method,our proposal can reduce the degrees of freedom of the system,and establish a more proper dynamic model for controller design.At last,numerical simulations verify the proposed dynamic model.
作者 张晓宇 刘晓峰 蔡国平 刘传凯 Zhang Xiaoyu;Liu Xiaofeng;Cai Guoping;Liu Chuankai(School of Naval Architecture,Ocean&Civil Engineering of Shanghai Jiao Tong University,Shanghai 200240,China;Beijing Aerospace Control,Center,Beijing 100094,China)
出处 《动力学与控制学报》 2022年第3期25-39,共15页 Journal of Dynamics and Control
基金 国家自然科学基金资助项目(11772187,11802174)。
关键词 柔性关节柔性连杆机械臂 动力学模型 哈密顿原理 假设模态法 振动抑制 flexible-fink flexible-joint manipulator dynamic model Hamilton's principle assumed modes method vibration suppression
  • 相关文献

参考文献2

二级参考文献28

  • 1洪嘉振,尤超蓝.刚柔耦合系统动力学研究进展[J].动力学与控制学报,2004,2(2):1-6. 被引量:41
  • 2Skehon R E, Gregory C Z. Measurement feedback and model reduction by modal cost analysis. In: Proceedings of the Joint Automatic Control Conference. USA: Denver, 1979:211 -218.
  • 3Moore B C. Principal component analysis in linear system: controllability, observability and model reduction. IEEE Transaction on Automatic Control, 1981,26 ( 1 ) : 17 - 31.
  • 4Bai Z. Krylov subspace techniques for reduced - order modeling of large-scale dynamical systems. Applied Numeri- cal Mathematics, 2002,43 ( 1 ) :9 - 44.
  • 5Michael L, Eberhard P. A two-step approach for model re- duction in flexible multibody dynamics. Multibody System Dynamics, 2007,17 : 157 - 176.
  • 6Fehr J, Eberhard P. Simulation process of flexible muhi- body systems with non-modal model order reduction tech- niques. Multibody System Dynamics, 2011,25 ( 3 ) : 313 - 334.
  • 7Salimbahrami B, Lohmann B. Order reduction of large scale second-order systems using Krylov subspace methods. Linear Algebra and its Applications, 2006,415 (2) : 385 - 405.
  • 8Boning P. The coordinated of space robot teams for the on- orbit construction of large flexible space structures [ PhD Thesis ]. Cambridge : Massachusetts Institute of Technolo- gy, 20O9.
  • 9ishijima Y, Tzeranis D, Dubowsky S. The on-orbit maneu- Vering of large space flexible structures by free-flying ro- bots. In- Battrick B ed, ESA SP-603, Proceedings of the 8th International Symposium on Artificial Intelligence, Ro- botics and Automation in Space. Munich, Germany: Euro- pean Space Agency, 2005.
  • 10Kane TR, Ryan R R, Banerjee A K. Dynamics of cantile- ver beam attached to moving base. Journal of Guidance, Control and Dynamics, 1987,10(2) :139 -151.

共引文献8

同被引文献101

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部