期刊文献+

基于人工智能的作物病害识别研究进展 被引量:22

Research progresses in artificial intelligence-based crop disease identification
原文传递
导出
摘要 传统依靠人工经验的作物病害识别方式难以适应大规模种植环境,迫切需要寻求新的解决方案。近年来,人工智能技术在许多领域取得了丰硕成果,在作物病害识别领域也取得较好的效果。为深入了解人工智能技术在作物病害识别领域中的研究现状,该文主要从传统的机器学习方法和深度学习方法2个角度分析人工智能技术在作物病害识别领域的研究进展,主要包括这2种方法的技术理论、主要工作流程、应用现状及优缺点,同时展望了人工智能技术在未来作物病害识别领域的发展趋势。 Traditional crop disease identification methods that rely on manual experience are not completely suitable for large-scale growing environments,and it is an urgent to find new solutions.In recent years,with the fruitful achievements of artificial intelligence(AI)technologies in many fields,it has been used in crop disease identification and achieved exciting progresses.In order to gain an in-depth understanding of the progresses of AI in crop disease identification tasks,this paper mainly analyzes the application of AI in crop disease identification from two perspectives:conventional machine learning methods and deep learning methods.The technical theory of these methods,main workflow,application status,advantages and disadvantages of the two methods are also investigated respectively.The trend of crop disease identification in the future is also foreseen at the same time.
作者 周长建 宋佳 向文胜 Zhou Changjian;Song Jia;Xiang Wensheng(High-performance Computing and Artificial Intelligence Research Center,Northeast Agricultural University,Harbin 150030,Heilongjiang Province,China;Key Laboratory of Agricultural Microbiology in Heilongjiang Province,Northeast Agricultural University,Harbin 150030,Heilongjiang Province,China;State Key Laboratory for Biology of Plant Diseases and Insect Pests,Institute of Plant Protection,Chinese Academy of Agricultural Sciences,Beijing 100193,China)
出处 《植物保护学报》 CAS CSCD 北大核心 2022年第1期316-324,共9页 Journal of Plant Protection
基金 国家自然科学基金(32030090)。
关键词 植物保护 病害识别 人工智能 机器学习 plant protection disease identification artificial intelligence machine learning
  • 相关文献

参考文献5

二级参考文献30

  • 1MarkoffJ. How many computers to identify a cat?[NJ The New York Times, 2012-06-25.
  • 2MarkoffJ. Scientists see promise in deep-learning programs[NJ. The New York Times, 2012-11-23.
  • 3李彦宏.2012百度年会主题报告:相信技术的力量[R].北京:百度,2013.
  • 410 Breakthrough Technologies 2013[N]. MIT Technology Review, 2013-04-23.
  • 5Rumelhart D, Hinton G, Williams R. Learning representations by back-propagating errors[J]. Nature. 1986, 323(6088): 533-536.
  • 6Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks[J]. Science. 2006, 313(504). Doi: 10. 1l26/science. 1127647.
  • 7Dahl G. Yu Dong, Deng u, et a1. Context-dependent pre?trained deep neural networks for large vocabulary speech recognition[J]. IEEE Trans on Audio, Speech, and Language Processing. 2012, 20 (1): 30-42.
  • 8Jaitly N. Nguyen P, Nguyen A, et a1. Application of pretrained deep neural networks to large vocabulary speech recognition[CJ //Proc of Interspeech , Grenoble, France: International Speech Communication Association, 2012.
  • 9LeCun y, Boser B, DenkerJ S. et a1. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, I: 541-551.
  • 10Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)[OLJ.[2013-08-01J. http://www. image?net.org/challenges/LSVRC/2012/.

共引文献693

同被引文献285

引证文献22

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部