期刊文献+

基于GWO-P&O算法的局部阴影光伏MPPT研究 被引量:6

Research on MPPT of Photovoltaic Under Partial Shading Condition Based on GWO-P&O Algorithm
在线阅读 下载PDF
导出
摘要 针对局部阴影条件下光伏阵列最大功率点跟踪,提出了一种灰狼算法与扰动观察法相结合的复合控制算法—GWO-P&O算法。首先利用灰狼算法的全局搜索能力定位最大功率点的范围,然后采用小步长的扰动观察法进行局部搜索,找到精确的最大功率点。采用MATLAB/Simulink构建了完整的系统仿真模型,仿真结果表明,扰动观察法在局部阴影条件下陷入了局部最优解,没有追踪到最大功率点。与灰狼算法相比,该复合算法在局部阴影条件下,追踪效率达100%,提高了1.11%,其收敛时间由0.8 s缩短至0.52 s,收敛时间提高了35%,因此,该算法兼顾了最大功率点追踪的速度和精度。系统仿真验证了该算法的正确性和有效性。 In practical photovoltaic system engineering,due to the influence of changes in light intensity,the output power voltage curve of photovoltaic array often presents multi-peak phenomenon.The traditional maximum power point tracking(MPPT)algorithm is easy to be trapped in the local optimal solution and cannot accurately track the maximum value.Aiming at the maximum power point tracking of photovoltaic array under partial shading condition(PSC),a composite control algorithm GWO P&O algorithm combining grey wolf optimization(GWO)and perturbation&observe(P&O)is proposed.Firstly,the global search ability of Gray Wolf algorithm is used to locate the range of maximum power point,and then the small step disturbance observation method is used to find the accurate maximum power point.A complete system simulation model is constructed by Matlab/Simulink.The simulation results show that the disturbance observation method falls into the local optimal solution under partial shading conditions and does not track the maximum power point.Compared with the grey wolf algorithm,the tracking efficiency of the composite algorithm reaches 100%under local shadow conditions,which increases by 1.11%.The convergence time is shortened from 0.8s to 0.5s,and the convergence time is increased by 35%.Therefore,the algorithm takes into account the speed and accuracy of the maximum power point tracking.System simulation verifies the correctness and effectiveness of the algorithm.
作者 沈磊 徐岸非 黄晴宇 余嘉川 SHEN Lei;XU Anfei;HUANG Qingyu;YU Jiachuan(Hubei Key Laboratory for High Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System,Hubei Univ.of Tech.,Wuhan,430068,China)
出处 《湖北工业大学学报》 2022年第2期25-29,43,共6页 Journal of Hubei University of Technology
基金 湖北省技术创新专项重大项目(2019AAA018)。
关键词 最大功率点跟踪 局部阴影 灰狼算法 扰动观察法 maximum power point tracking partial shading condition grey wolf optimization perturbation&observe
  • 相关文献

参考文献8

二级参考文献59

  • 1崔岩,蔡炳煌,李大勇,胡宏勋,董静微.太阳能光伏系统MPPT控制算法的对比研究[J].太阳能学报,2006,27(6):535-539. 被引量:178
  • 2邵国庆,孙秀桂,孙江波.基于能量转换的光伏系统MPPT控制算法比较[J].新能源,2011(8):58-61.
  • 3Masafumi,et al. Maximum Power Point Tracking of Multiple Photo-voltaic Arrays: A PSO Approach[ J]. IEEE Transactions on Aero-space And Electronic Systems, 2011,47(1 ) :367-380.
  • 4Amine A M, Mohamed M, Mohamed M. A New Variable Step Size INC MPPT Method for PV Systems [ C ]//Marrakech : 2014 Interna- tional Conference on ICMCS, 2014: 1563-1568.
  • 5Kjaer S B. Evaluation of the Hill Climbing and the Incremental Conductance Maximum Power Point Trackers for Photovoltaic Power Syste Systems[J]. IEEE Transactions on Enetrgy Conver- sion,2012,27(4) :922-929.
  • 6Syafaruddin, Karatepe E ,et al. Artificial Neural Network-polar Co-ordinated Fuzzy Controller Based Maximum Power Point Tracking Control under Partially Shaded Conditions [J]. IET RENEW- ABLE POWER GENERATION, 2009,3 (2) : 239-253.
  • 7MiyatakeM, Inada T, Hiratsuka I, et al. Control Characteristics of a Fibonacci-Search-Based Maximum Power Point Tracker When a Photovoltaie Array is Partially Shaded [ C ]//Power Electronics and Motion Control Conference, IEEE, 2004 : 816-821.
  • 8Yang X S, Deb S. Engineering Optimization by Cuckoo Search [J]. Int' 1 Journal Math Modeling and Numerical Optimization, 2010,1 (4) :330-343.
  • 9Mautegna R N, Stanley /4 E. Stochastic Process with Ultraslow Convergence to a Gaussian:The Truncated Levy Flight [J]. Physi- cal Review Letters, 1994,73 (22) :2946-2949.
  • 10刘邦银,段善旭,康勇.局部阴影条件下光伏模组特性的建模与分析[J].太阳能学报,2008,29(2):188-192. 被引量:120

共引文献47

同被引文献129

引证文献6

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部