期刊文献+

基于Affinity Propagation算法的半监督微博水军识别 被引量:3

Internet Hirelings Semi-supervised Detection of Weibo Based on Affinity Propagation Algorithm
在线阅读 下载PDF
导出
摘要 对微博网络空间中水军账户的识别研究,有助于清朗网络空间和维护社会安定。首先,文章针对微博水军不断进化、传统特征集无法覆盖现有水军特征,结合水军定义与原始特征,构造了新特征。然后,针对水军账户标注困难,无标注数据又没能充分利用的问题,提出了一种基于Affinity Propagation算法的半监督微博水军识别方法(APDHW)。该方法通过在Affinity Propagation算法中引入欧氏距离Radius阈值,再结合支持向量机分类算法,实现对微博水军识别。通过多组实验对比及实证研究,结果表明文章所提的微博水军识别方法在牺牲少量算法时间的情况下得到较好的识别效果,提升了水军识别的准确率和召回率。 The research on the Internet hirelings accounts in Weibo contributes to purify cyberspace and maintain social stability.First of all,in view of the continuous evolution of the Internet hirelings in Weibo,the traditional feature set cannot cover the existing features of it.Therefore,the new features are constructed combined with the definition of the Internet hirelings and its original features.Then,in view of the difficulty of account annotation and the insufficient utilization of no annotation data,a semi-supervised recognition method of the Internet hirelings in Weibo (APDHW) is proposed,based on Affinity Propagation arithmetic.In this method,the recognition of the Internet hirelings in Weibo can be implemented through bringing Euclidean distance Radius threshold in Affinity Propagation arithmetic and combining support vector machine classification arithmetic.Through a number of experiments and empirical research,the results show that the recognition method of the Internet hirelings in Weibo proposed in this paper achieves a better recognition effect under the expense of a small amount of arithmetic time,and improves the accuracy and recall rate of the Internet hirelings recognition.
作者 林义钧 吴渝 李红波 LIN Yijun;WU Yu;LI Hongbo(School of Cyber Security and Information Law,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;School of Innovation and Enterpreneurship,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《信息网络安全》 CSCD 北大核心 2022年第3期85-96,共12页 Netinfo Security
基金 国家自然科学基金[61903056] 国家社会科学基金[17XFX013]。
关键词 微博水军 Affinity Propagation 半监督学习 水军识别 Internet hirelings of Weibo affinity propagation semi-supervised learning Internet hirelings detection
  • 相关文献

参考文献11

二级参考文献66

  • 1韩忠明,许峰敏,段大高.面向微博的概率图水军识别模型[J].计算机研究与发展,2013,50(S2):180-186. 被引量:11
  • 2苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:394
  • 3http://news.ifeng.com/opinion/special/wangluoshuijun/[EB/OL].
  • 4http://zh.wikipedia.org/zh-cn/%E7%9B%B2%E6%8%A2%E7%9B% 90%E4%BA%8B%E4%BB%B6 [EB/OL].
  • 5http://qcyn.sina.com.cn/news/ynyw/2011/1205/01134061411.html [EB/oL].
  • 6" RAYMOND Y K, STEPHEN L, LIAO S Y. Text mining and probabil- istic language modeling for online review spam detection[J]. ACM Trans Management Inf Syst, 2011,2(4):25.
  • 7GRIER C, THOMAS K, PAXSON V, et al. @spam: the underground on 140 characters or less[A]. Proceedings of the 17th ACM Confer- ence on Computer and Communications Security[C]. Chicago, Illinois, USA, 2010.2%37.
  • 8IRANI D, WEBB S, PU C. Study of static classification of social spam profiles in MySpace[A]. ICWSM[C]. 2010.
  • 9THOMAS K, GRIER C, SONG D, et al. Suspended accounts in ret- rospect: an analysis of twitter spam[A]. Proceedings of the 2011 ACM SIGCOMM Conference on Interact Measurement Conference[C]. Ber- lin, Germany, 2011. 243-258.
  • 10SHIN Y, GUPTA M, MYERS S. Prevalence and mitigation of forum spamming[A]. IEEE INFOCOM 2011[C]. 2011. 2309- 2317.

共引文献140

同被引文献21

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部