期刊文献+

基于区域失衡子空间的领先NSGAII算法 被引量:1

A leading NSGAII algorithm based on regional unbalanced subspace
在线阅读 下载PDF
导出
摘要 针对传统进化算法求解多目标优化问题时存在计算量大、难以平衡收敛速度和种群分布均匀性的问题,本文提出了一种基于区域失衡子空间的领先NSGAII算法(NSGAII-URS).首先,基于NSGAII算法,结合局部搜索算法,在每次遗传过程中添加种群领先解解集,引导种群快速收敛;然后,将非支配解所在的目标空间均匀划分,提出稀疏子空间和空闲子空间的概念,通过基于稀疏度的局部搜索策略对失衡子空间优化,进一步提升种群分布的均匀性.我们将本文方法与其他5种先进的多目标进化算法比较,通过基准测试函数进行验证,并采用反世代距离(IGD)和超体积(HV)两个通用指标进行性能评价.实验结果表明,该算法在解的分布性和收敛性方面明显优于对比的其他多目标优化算法. In order to address the drawbacks such as a large amount of calculation, the difficulty in balancing convergence speed, and uniformity of population distribution when solving multi-objective optimization problems with traditional evolutionary algorithms, a leading NSGAII algorithm based on regional unbalanced subspace(NSGAII-URS) is proposed. First, based on the NSGAII algorithm and the local search algorithm, the population leading solution set is added in each genetic process to guide the population to converge quickly. Then the target space, where the non-dominated solution is located, is evenly divided, the concepts of sparse subspace and free subspace are introduced. Finally, the unbalanced subspace is optimized by a local search strategy based on sparse degree to further improve the uniformity of the population distribution. The proposed algorithm is compared with five other advanced multi-objective evolutionary algorithms, verified by benchmark test function, and two general indicators of inverse generation distance(IGD) and hypervolume(HV) are used for performance evaluation. Experimental results show that the proposed NSGAII algorithm is significantly better than other compared multi-objective optimization algorithms in terms of solution distribution and convergence.
作者 甘翔宇 周新志 杨秀清 向勇 叶毅 GAN Xiang-Yu;ZHOU Xin-Zhi;YANG Xiu-Qing;XIANG Yong;YE Yi(College of Electronics and Information Engineering,Sichuan University,Chengdu 610065,China)
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第2期85-93,共9页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金委员会-中国民用航空局民航联合研究基金(U1933123)。
关键词 多目标优化 局部搜索 均匀性 失衡 子空间 Multi-objective optimization Local search Uniformity Unbalanced Subspace
  • 相关文献

参考文献5

二级参考文献43

  • 1吴秀丽,孙树栋,杨展,翟颖妮.多目标柔性Job Shop调度问题的技术现状和发展趋势[J].计算机应用研究,2007,24(3):1-5. 被引量:19
  • 2BANDYOPADHYAY S, MAULIK U, COELLO C A, et al. vip Editorial: Special Issue on Advances in Multiobjective Evolutionary Algorithms for Data Mining [J]. IEEE Transactions on Evolutionary Computation, 2014,18(1): 1-3.
  • 3SINDHYA K, MIETTINEN K, DEB K. A Hybrid Framework for Evolutionary Multiobjeetive Optimization [J].IEEE Transactions on Evolutionary Computation, 2013, 17(4) : 495-511.
  • 4LIAO H L, WU Q H. Multi-objective Optimization by Learning Automata [J]. Journal of Global Optimization, 2013 55(2) : 459-487.
  • 5SRINIVAS N, DEB K. Muiltiobjective Optimization Using Nondominated Sorting In Genetic Algorithms[J]. Evolutionary Computation, 1994, 2(3): 221-248.
  • 6DEB K, PRATAP A, AGARWAL S, et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-H [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
  • 7RODRIGUEZ J G, SALAS R. The Gini Coefficient: Majority Voting and Social Welfare [J]. Journal of Economic Theory, 2014, 152: 214-223.
  • 8THAKUR M, MEGHWANI S S, JALOTA H. A Modified Real Coded Genetic Algorithm for Constrained Optimization [J].Applied Mathematics and Computation, 2014, 235 : 292-317.
  • 9KIM H, LIOU M S. Adaptive Directional Local Search Strategy for Hybrid Evolutionary Multiobjective Optimization [J].Applied Soft Computing, 2014, 19: 290-311.
  • 10DEB K, JAIN S. Running Performance Metrics for Evolutionary Multiobjective Optimization[R]. KanGAL Report, Kanpur: Indian Institute of Technology, 2002.

共引文献83

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部