期刊文献+

Design method and verification of a hybrid prosthetic mechanism with energy-damper clutchable device for transfemoral amputees 被引量:1

暂未订购
导出
摘要 Transfemoral amputees(TAs)have difficulty in mobility during walking,such as restricted movement of lower extremity and body instability,yet few transfemoral prostheses have explored human-like multiple motion characteristics by simple structures to fit the kinesiology,biomechanics,and stability of human lower extremity.In this work,the configurations of transfemoral prosthetic mechanism are synthesized in terms of human lower-extremity kinesiology.A hybrid transfemoral prosthetic(HTP)mechanism with multigait functions is proposed to recover the gait functions of TAs.The kinematic and mechanical performances of the designed parallel mechanism are analyzed to verify their feasibility in transfemoral prosthetic mechanism.Inspired by motion-energy coupling relationship of the knee,a wearable energy-damper clutched device that can provide energy in knee stance flexion to facilitate the leg off from the ground and can impede the leg’s swing velocity for the next stance phase is proposed.Its co-operation with the springs in the prismatic pairs enables the prosthetic mechanism to have the energy recycling ability under the gait rhythm of the knee joint.Results demonstrate that the designed HTP mechanism can replace the motion functions of the knee and ankle to realize its multimode gait and effectively decrease the peak power of actuators from 94.74 to 137.05 W while maintaining a good mechanical adaptive stability.
出处 《Frontiers of Mechanical Engineering》 SCIE CSCD 2021年第4期747-764,共18页 机械工程前沿(英文版)
  • 相关文献

参考文献3

二级参考文献10

共引文献15

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部