期刊文献+

Hamilton–Pontryagin spectral-collocation methods for the orbit propagation 被引量:1

原文传递
导出
摘要 According to the discrete Hamilton–Pontryagin variational principle,we construct a class of variational integrators in the real vector spaces and extend to the Lie groups for the left-trivialized Lagrangian mechanical systems by employing the spectral-collocation method to discretize the corresponding Lagrangian and kinematic constraints.The constructed framework can be transformed easily to the well-known symplectic partitioned Runge–Kutta methods and the higher order symplectic partitioned Lie Group methods by choosing same interpolation nodes and quadrature points.Two numerical experiments about the orbit propagation of Kepler two-body system and the rigid-body flow propagation of a free rigid body are conducted,respectively.The simulating results reveal that the constructed update schemes can possess simultaneously the excellent exponent convergence rates of spectral methods and the attractive long-term structure-preserving properties of geometric numerical algorithms.
出处 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2021年第11期1696-1713,I0003,共19页 力学学报(英文版)
基金 This work was supported by the National Natural Science Foundation of China(Grants 11772049,and 12132002).
  • 相关文献

参考文献2

二级参考文献8

共引文献3

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部