期刊文献+

基于MEB和SVM方法的新类别分类研究 被引量:7

New Category Classification Research Based on MEB and SVM Methods
在线阅读 下载PDF
导出
摘要 有1份仅含A类与B类的训练集,与1份包含不止这2个类别的测试集,如何对测试集中的样本进行分类?针对这个问题,本文提出3种基于SVM方法和最小包围球方法(minimum enclosing ball,MEB)的新类别分类方法。这3种新类别分类方法不仅解决了SVM不能正确判别新类别的缺点,而且在实际数据分析中获得了较好的效果。本文使用乳腺癌分子分型数据进行分析,最终样本分类准确率可达90%以上,新类别样本分类正确率可达99%以上。 This paper mainly studies the following problems:if there is a training set containing only A and B classes,and a test set containing more than these two categories,how should the samples in the test set be classified?For this problem,three new category classification methods based on SVM and minimum enclosing ball method are proposed.These three new methods not only can solves the weakness of SVM that can't correctly identifying new categories,but also can obtain good effect in the real data analysis.The data set used in this paper is breast cancer molecular subtype data set.The final sample classification accuracy rate can reach more than 90%,and the classification accuracy of the new category samples can be more than 99%.
作者 杨迪 方扬鑫 周彦 YANG Di;FANG Yangxin;ZHOU Yan(College of Mathematics and Statistics,Shenzhen University,Shenzhen Guangdong 518060,China)
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2022年第1期57-67,共11页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金(12071305,11871390,11871411) 广东省自然科学基金(2020B1515310008)。
关键词 机器学习 多分类问题 支持向量机 MEB SVDD machine learning multi-classification problem support vector machine MEB SVDD
  • 相关文献

参考文献6

二级参考文献36

  • 1刘忠臣,周兴华,陈义兰,胡光海.浅水多波束系统及其最新技术发展[J].海洋测绘,2005,25(6):67-70. 被引量:40
  • 2金翔龙.海洋地球物理研究与海底探测声学技术的发展[J].地球物理学进展,2007,22(4):1243-1249. 被引量:92
  • 3Thorsten Joachims. Learning to classify text using support vector machines: [Ph. D. disseration] . Ithaca, NY, USA: Cornell University, 2001.
  • 4Dieter Merkl. Text classification with self-organizing maps: Some lessons learned. Neurocomputing, 1998, 21(1-3): 61~ 77.
  • 5Stephen Soderland, David Fisher, Jonathan Aseltine, et al. Issues in inductive learning of domain-Specific text extraction rules.The Workshop on New Approaches to Learning for Natural Language Processing at the 14th Int'l Joint Conf. Artificial Intelligence, Montreal, Canada, 1995.
  • 6J. F. Martinex-Trinidad, B. Beltran-Martinez, J. Ruiz-Shulcloper. A tool to discover the main themes in a Spanish or English document. Expert Systems with Applications, 2000, 19(4): 319~327.
  • 7Y. Yang. An evaluation of statistical approaches to text categorization. Information Retrieval Journal, 1999, 1 (1-2): 67~88.
  • 8Stefan Wermter. Neural network agents for learning semantic text classification. Information Retrieval, 2000, 3(2): 87~103.
  • 9M. Gordon. Probabilistic and genetic algorithms for document retrieval. Communications of ACM, 1998, 31(10): 1208~1218.
  • 10S.T. Roweis, L.K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323~2326.

共引文献1546

同被引文献74

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部