期刊文献+

Artificial intelligence can assist with diagnosing retinal vein occlusion 被引量:1

原文传递
导出
摘要 AIM:To assist with retinal vein occlusion(RVO)screening,artificial intelligence(AI)methods based on deep learning(DL)have been developed to alleviate the pressure experienced by ophthalmologists and discover and treat RVO as early as possible.METHODS:A total of 8600 color fundus photographs(CFPs)were included for training,validation,and testing of disease recognition models and lesion segmentation models.Four disease recognition and four lesion segmentation models were established and compared.Finally,one disease recognition model and one lesion segmentation model were selected as superior.Additionally,224 CFPs from 130 patients were included as an external test set to determine the abilities of the two selected models.RESULTS:Using the Inception-v3 model for disease identification,the mean sensitivity,specificity,and F1 for the three disease types and normal CFPs were 0.93,0.99,and 0.95,respectively,and the mean area under the curve(AUC)was 0.99.Using the DeepLab-v3 model for lesion segmentation,the mean sensitivity,specificity,and F1 for four lesion types(abnormally dilated and tortuous blood vessels,cotton-wool spots,flame-shaped hemorrhages,and hard exudates)were 0.74,0.97,and 0.83,respectively.CONCLUSION:DL models show good performance when recognizing RVO and identifying lesions using CFPs.Because of the increasing number of RVO patients and increasing demand for trained ophthalmologists,DL models will be helpful for diagnosing RVO early in life and reducing vision impairment.
出处 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2021年第12期1895-1902,共8页 国际眼科杂志(英文版)
基金 Tianjin Science and Technology Project(No.BHXQKJXM-SF-2018-05) Tianjin Clinical Key Discipline(Specialty)Construction Project(No.TJLCZDXKM008).
  • 相关文献

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部