摘要
Perovskite solar cells(PVSCs)have emerged as a promising photovoltaic technology and have attracted wide research interest due to their outstanding photovoltaic performance,low cost,and the ability to fabricate largearea devices.An impressive certified power conversion efficiency(PCE)of 25.2%has been achieved,demonstrating the excellent potential of PVSCs for future applications.Hole-transporting materials play a key role in improving the device performance of PVSCs by facilitating the extraction of photogenerated holes and their transport from the perovskite layer to the anode.This review provides a brief introduction to PVSCs and summarizes the recent progress in small molecule hole-transporting materials(SM-HTMs)bearing various cores and different4-anisylamino-based end caps.We classify the end caps into N,N-di-4-anisylamino(DAA),4-(N,N-di-4-anisylamino)benzo(DAB),and N3,N6(or N2,N7)-bis(di-4-anisylamino)-9 H-carbazole(3,6-DAC or 2,7-DAC)groups.We also review the core type,end cap position and number,how these affect the overall properties of the SM-HTMs,and the resultant PVSC device performances.Finally,the challenges and perspectives for the future development of SM-HTMs are presented.
基金
the National Natural Science Foundation of China(NSFC,21825502)
the Foundation of State Key Laboratory of Polymer Materials Engineering(SKLPME 2017-2-04)
the Fundamental Research Funds for the Central Universities。