期刊文献+

自适应OFDM系统的时域信道预测研究 被引量:8

Research of the time-domain channel prediction for adaptive OFDM systems
原文传递
导出
摘要 针对自适应OFDM系统,提出了一种新型时域信道预测策略。该策略利用递归量化分析方法,量化并估计信道脉冲响应中每个时延抽头的局部可预测性,然后利用每个时延抽头的局部可预测性筛选出信道脉冲响应中重要的时延抽头;最后,利用基于联合回声状态网络的信道预测器实现各个重要时延抽头的信道预测。在仿真部分,利用基于IEEE802.11ah协议的OFDM系统来评估系统的性能。仿真结果表明,通过递归量化分析,发射端可以准确地筛选出信道脉冲响应中重要的时延抽头。除此之外,联合回声状态网络可以产生稀疏的输出权值;而且,由于具有oracle属性,提出的联合回声状态网络在基本的回声状态网络的基础上有91.57%的预测性能提升。 In this paper, a novel time-domain channel prediction technique for adaptive OFDM systems is introduced. The novel time-domain channel prediction technique utilizes the RQA to quantify and estimate the local predictability of each time-delay tap in the channel impulse response, and then based on the local predictability of each delay tap, we select those significant time-delay taps in the channel impulse response;finally, the joint echo state network(JESN) is utilized to predict the channel state information in each significant time-delay tap. In the simulation part, the OFDM system based on the IEEE802.11 ah standard to evaluate the performance. The simulation results show that by the TSS-RQA, those significant time-delay taps in the channel impulse response are accurately selected in the transmitter. In addition, the JESN produces the sparse output weight matrix. Due to the oracle property, the improved prediction performance of the JESN is approximate to 91.75%, compared to the basic echo state network.
作者 何怡刚 隋永波 Farhan Ali 黄源 程彤彤 宁暑光 He Yigang;Sui Yongbo;Farhan Ali;Huang Yuan;Cheng Tongtong;Ning Shuguang(School of Electrical and Automation Engineering,Hefei University of Technology,Hefei 230009,China)
出处 《电子测量与仪器学报》 CSCD 北大核心 2021年第5期100-110,共11页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(51977153,51977161,51577046) 国家自然科学基金重点项目(51637004) 国家重点研发计划“重大科学仪器设备开发”项目(2016YFF0102200) 装备预先研究重点项目(41402040301)资助。
关键词 信道预测 OFDM系统 递归量化分析 回声状态网络 channel prediction OFDM system recurrence quantification analysis echo state network
  • 相关文献

参考文献4

二级参考文献64

  • 1申晓红,王海燕,白峻,周倩.基于导频chirpZ变换的基带OFDM水声通信多普勒估计方法[J].西北工业大学学报,2009,27(1):116-121. 被引量:6
  • 2Akaike H. Information theory and an extension of the maximum likelihood principle. In: Petrov B N, Caki F, eds. Second International Symposium on Information Theory. Budapest: Akademiai Kiado, 1973. 267 -281.
  • 3Schwarz G. Estimating the dimension of a model. Ann Statist, 1978, 6:461-464.
  • 4Mallows C L. Some comments on Cp. Technometrics, 1973, 15:661-675.
  • 5Tibshirani R. Regression shrinkage and selection via the Lasso. J Royal Statist Soc B, 1996, 58:267-288.
  • 6Donoho D L, Huo X. Uncertainty principles and ideal atomic decomposition. IEEE Trans Inf Theory, 2001, 47:2845-2862.
  • 7Donoho D L, Elad E. Maximal sparsity representation via l1 minimization. Proc Natl Acal Sci, 2003, 100:2197-2202.
  • 8Chen S, Donoho D L, Saunders M. Atomic decomposition by basis pursuit. SIAM Rev, 2001, 43:129-159.
  • 9Fan J, Heng P. Nonconcave penalty likelihood with a diverging number of parameters. Ann Statist, 2004 32:928-961.
  • 10Zou H. The adaptive Lasso and its oracle properties. J Amer Statist Assoc, 2006, 101:1418-1429.

共引文献73

同被引文献73

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部