期刊文献+

基于贝叶斯网络的加热炉煤气泄漏风险评估 被引量:3

Risk evaluation of gas leakage in heating furnace based on Bayesian Network
在线阅读 下载PDF
导出
摘要 针对轧钢加热炉煤气泄漏的风险,以蝴蝶结模型为基础,建立了加热炉煤气泄漏的贝叶斯网络模型。采用模糊理论的隶属度函数、λ截集理论、左右模糊排序法确定贝叶斯网络的先验概率,分析了影响加热炉煤气泄漏的动态因素,引入时间因素研究加热炉煤气泄漏风险随时间变化的动态特性。由实例分析得到了某加热炉煤气泄漏的风险,采用比例变化法得到敏感度分析(ROV)值曲线,从而确定重要根节点,得到了加热炉煤气泄漏风险的动态变化曲线。结果可为加热炉煤气泄漏的动态风险分析及安全管理提供借鉴和参考。 In order to evaluate the risk of gas leakage in heating furnace of rolling steel production,a Bayesian network model of gas leakage in heating furnace is established based on the bow-tie model.The prior probability of Bayesian network is determined by using the membership function of fuzzy theory,lambda section set theory and the left and right fuzzy sorting method,and the dynamic factors affecting gas leakage in heating furnace are analyzed.The dynamic characteristics of gas leakage risk in heating furnace with time change are studied by introducing time factor.The risk of gas leakage in a heating furnace is analyzed by an example,and the sensitivity analysis(ROV)value curve is obtained by using the proportional change method,so as to determine the important root nodes and obtain the dynamic change curve of gas leakage risk in the heating furnace.The results can provide reference for dynamic risk analysis and safety management of gas leakage in heating furnace.
作者 常一 吴雅菊 CHANG Yi;WU Ya-ju(School of Safety Engineering,Shenyang Aerospace University,Liaoning Shenyang 110136,China;School of Resources and Civil Engineering,Northeastern University,Liaoning Shenyang 110819,China)
出处 《消防科学与技术》 CAS 北大核心 2021年第4期504-508,518,共6页 Fire Science and Technology
基金 国家重点研发计划项目(2017YFC0805100) 沈阳航空航天大学大学生创新训练计划项目(201910143120)。
关键词 蝴蝶结模型 贝叶斯网络 模糊理论 敏感性分析 动态风险分析 bow-tie model Bayesian network fuzzy theory sensitivity analysis dynamic risk analysis
  • 相关文献

参考文献8

二级参考文献77

共引文献74

同被引文献25

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部