期刊文献+

基于加权低秩矩阵填充的图像去噪算法 被引量:2

Denoising algorithms of images based on weighted low-rank matrixpadding
在线阅读 下载PDF
导出
摘要 为了更好地利用图像信息和增强图像的视觉效果,图像去噪成为图像处理领域中一个热点问题。针对图像去噪问题,本文在低秩矩阵填充理论的基础上,提出了两种基于加权低秩矩阵填充的图像去噪算法。首先,基于补丁匹配提取相似的补丁组成低秩矩阵;其次,利用相似补丁的性质形成含有缺失项的低秩矩阵;然后,利用加权核范数构建补丁块的去噪模型;最后,基于奇异值阈值分解和优化一最小化奇异值阈值分别求解加权低秩矩阵去噪优化模型,得到基于奇异值阈值分解的加权矩阵填充(SVT-MC)去噪算法和基于优化-最小化奇异值阈值的加权矩阵填充(MMST)去噪算法。实验结果表明,本文所提出的SVT-MC去噪算法和MMST去噪算法对不同程度的混合噪声都具有良好的去噪效果。 In order to make better use of image information and enhance the visual effect of images,image denoising has become a hot issue in the field of image processing.To address the image denoising problem,this paper proposes two image denoising algorithms based on weighted low-rank matrix padding on the basis of low-rank matrix padding theory.Firstly,the low-rank matrix is formed by extracting similar patches based on patch matching;secondly,the low-rank matrix with missing terms is formed by using the nature of similar patches;then,the denoising model of patch blocks is constructed by using the weighted kernel parametrization;finally,the weighted low-rank matrix denoising optimization model is solved based on the singular value threshold decomposition and the optimisation of a minimisation singular value threshold,respectively,to obtain the weighted matrix padding based on singular value threshold decomposition.The SVT-MC denoising algorithm and the MMST denoising algorithm based on the optimization-minimization singular value threshold are obtained.The experimental results show that both the SVT-MC denoising algorithm and the MMST denoising algorithm have good denoising effects on different levels of mixed noise.
作者 范文婧 杨艳 FAN Wenjing;YANG Yan(State Grid Qinghai Sales and Service Center,Xining 810008 Qinghai,China)
出处 《电力大数据》 2021年第3期76-83,共8页 Power Systems and Big Data
关键词 图像去噪 混合噪声 低秩矩阵 加权矩阵填充 去噪算法 image denoising mixed noise low-rank matrix weighted matrix completion denoising algorithm
  • 相关文献

参考文献11

二级参考文献105

  • 1彭燕妮.小波变换在信号消噪中的应用[J].重庆大学学报(自然科学版),2004,27(10):40-43. 被引量:9
  • 2彭真明,李亚林,李健,赵辉,何宗强.用提升法小波分析进行地震信号的噪声衰减[J].天然气工业,2006,26(7):40-42. 被引量:4
  • 3Buades A, Coll B, Morel J M. A non-local algorithm for image denoising. In: Proceedings of the 2005 IEEE Com- puter Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 60-65.
  • 4Easley G R, Labate D, Colonna F. Shearlet based total vari- ation for denoising. IEEE :l:'ansactions on hnage Processing, 2009, 16(2): 260-268.
  • 5Huang D A, Kang L W, Wang Y C, Lin C W. Self-learning based image decomposition with applications to single image denoising. IEEE Ti'ansactions on Multimedia, 2014, 16(1): 83-93.
  • 6Mahmoudi M, Sapiro G. Fast image and video denoising via non-locM means of similar neighborhoods. IEEE Signal Pro- cessing Lett:,rs, 2005, 12(12): 839-842.
  • 7Yan R M, Shao L, Cvetkovic S D, Klijn J. Improved nonloca.I means based on pre-classification and invariant block match- ing. Journal of Display Technology, 2012, 8(4): 212-218.
  • 8Zhang X D, Feng X C, Wang W W. Two-direction nonlo- cal model for image denoising. IEEE Transactions on hnage Processing, 2013, 22(1): 408-412.
  • 9Elad M, Aharon M. Image denoising via sparse and redun- dant representations over learned dictionaries. IEEE Trans- actions on Image Processing, 2006, 15(12): 3736-3745.
  • 10Dabov K, Foi A, Katkovnik V, Egiazarian K. hnage de- noising by sparse 3-D transform-domain collaborative filter- ing. IEEE Transactions on hnage Processing, 2007, 16(8): 2080-2095.

共引文献181

同被引文献28

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部