期刊文献+

一种基于词和事件主题的卷积网络的新闻文本分类方法 被引量:3

NEWS TEXT CLASSIFICATION METHOD BASED ON CONVOLUTIONAL NETWORK OF WORD-EVENT TOPIC
在线阅读 下载PDF
导出
摘要 针对传统文本分类过程中词表示特征时不够全面、可解释性差的问题,提出一种基于词和事件主题的W-E CNN文本分类方法,并给出基于BTM的事件主题模型。将传统基于词的特征表示方法与事件主题特征表示方法进行拼接作为CNN的输入,丰富特征语义信息,提高了文本分类的准确性。实验分析可知,该方法的分类准确性在一定程度上要优于其他方法。 In order to solve the problem that the traditional text classification process is not comprehensive and interpretable,this paper proposes a W-E CNN text classification method based on words-event topic,and gives an event topic model based on BTM.The traditional word-based feature representation method and event topic feature representation method were spliced as the input of CNN,which enriched the feature semantic information and improved the accuracy of text classification.The experimental analysis shows that the classification accuracy of this method is better than other methods to a certain extent.
作者 于游 付钰 吴晓平 Yu You;Fu Yu;Wu Xiaoping(Department of Information Security,Naval University of Engineering,Wuhan 430033,Hubei,China)
出处 《计算机应用与软件》 北大核心 2021年第5期170-174,240,共6页 Computer Applications and Software
基金 国家自然科学基金项目(61672531)。
关键词 文本分类 事件主题模型 BTM CNN Text classification Event topic model BTM CNN
  • 相关文献

参考文献5

二级参考文献30

  • 1方匡南,吴见彬,朱建平,谢邦昌.信贷信息不对称下的信用卡信用风险研究[J].经济研究,2010,45(S1):97-107. 被引量:66
  • 2孙冰,宫宁生,朱梧槚.基于覆盖的神经网络集成在语音识别中的应用[J].南京大学学报(自然科学版),2006,42(3):331-336. 被引量:3
  • 3王煜,白石,王正欧.用于Web文本分类的快速KNN算法[J].情报学报,2007,26(1):60-64. 被引量:33
  • 4Hansen L K, Salamon P, Neural Network Ensembles. IEEE Tran. on PAMI, 1990, 12(10):993-1001.
  • 5Hornik K M, Stinchcombe M, White H. Multilayer feed-forward networks are universal approximators. Neural Networks, 1989,2(2):359-366.
  • 6Vapnik V N. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995:235 - 313.
  • 7Cortes C, Vapnik V. Support Vector Networks. Machine Learning, 1995,20(3):273-297.
  • 8Zhang Ping, Bui T D, Suen C Y. A novel cascade ensemble classifier system with a high recognition performance on handwritten digits. Pattern Recognition, 2007,40(1):3415- 3529.
  • 9Zhou Z-H,Jiang Y,Yang Y-B, et al, Lung cancer cell identification based on artificial neural network ensembles. Artificial Intelligence in Medicine, 2002,24(1):25-36.
  • 10Nanni L. A novel ensemble of classifiers for protein fold recognition. Neurocomputing, 2006(69):2434-2437.

共引文献132

同被引文献41

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部