期刊文献+

基于双向编码转换器和文本卷积神经网络的微博评论情感分类 被引量:7

Weibo Comments Sentiment Classification Based on BERT and Text CNN
在线阅读 下载PDF
导出
摘要 对微博多分句的评论,ELMo-Text CNN、GPT等模型不能准确提取文本上下文联系,导致分类效果不理想。为了解决此问题,采用BERT-Text CNN模型,利用BERT独特自注意力机制的双向编码转换器结构获得具有句子全局特征的字向量,将字向量输入到Text CNN中,利用Text CNN捕获局部特征的能力,最终提取语义、语序以及上下文联系等高阶特征,解决了模型不能准确获取文本上下文联系的问题,实现了高准确率的微博评论细粒度情感分类。同时为验证该模型的优势,与现有模型进行比较,在simplifyweibo_4_moods数据集上测试结果显示BERT-Text CNN模型在准确率、召回率以及F1指标方面均有提升。 For comments with multiple sections within sentences,some state-of-art models,such as Embedding from Language Models-Text Convolutional Neural Network and Generative Pre-trained Transformer model,cannot accurately extract the meaning and therefore result in unsatisfactory performance.To solve this problem,we utilize Bidirectional Encoder Representations from Transformers-Text Convolutional Neural Network and Generative Pre-trained Transformer model.Using the bidirectional code converter structure of BERT′s unique self-attention mechanism,we can obtain the word vector of the global feature of the sentence,then we input the word vectors into Text CNN,then using Text CNN to capture local features,finally we extract high-level features,such as semantics and contextual connection.This process solved the problem of inaccurate contextual connection of the text obtained by the model,allowing us to realize the fine-grained sentiment classification of Weibo comments with high accuracy.Meanwhile,to verify the advantages of the model,we compared it with existing models.The test results on the simplifyweibo_4_moods dataset show that the BERT-Text CNN model has improved accuracy,recall,and F1 indicators.
作者 徐凯旋 李宪 潘亚磊 XU Kaixuan;LI Xian;PAN Yalei(Institute of Complexity Science,Qingdao University,Qingdao 266071,China;Institude For Future,Qingdao University,Qingdao 266071,China)
出处 《复杂系统与复杂性科学》 CAS CSCD 北大核心 2021年第2期89-94,共6页 Complex Systems and Complexity Science
关键词 情感分类 双向编码转换器 文本卷积神经网络 自注意力机制 sentiment classification bidirectional encode transformer Text CNN self-attention
  • 相关文献

参考文献2

二级参考文献45

  • 1赵军,许洪波,黄萱菁,谭松波,刘康,张奇.中文倾向性分析评测技术报告[C]//第一届中文倾向性分析评测会议(The First Chinese Opinion Analysis Evaluation).COAE,2008.
  • 2姚天昉,娄德成.汉语情感词语义倾向判别的研究[C]//中国计算技术与语言问题研究-第七届中文信息处理国际会议论文集,武汉:2007.
  • 3ACL 2006 Workshop on Sentiment and Subjectivity in Text[DB/OL], http://www, aclweb, org/anthology- new/W/W06/# 0300, 2006.
  • 4M. Ganapathibhotla, B. Liu. Mining Opinions in Comparative Sentences[C]//Proceedings of the 22nd International Conference on Computational Linguistics(Coling-2008), Manchester, 18-22 August, 2008.
  • 5S. Somasundaran, J. Wiebe, Josef Ruppenhofer (2008) Discourse Level Opinion Interpretation [C]// Coling, Manchester, 18-22 August, 2008.
  • 6M. Hu, B. Liu. Mining and summarizing customer reviews[C]//KDD '04 Proceedings of the tenth ACM SIGKDD international conference on Knowledge dis-covery and data mining. 2004.
  • 7Xuanjing Huang, W. Bruce Croft. A unified relevance model for opinion retrieval[C]//The 18th ACM Inter- national Conference on Information and KnowledgeManagement (CIKM) ,2009.
  • 8N. Jindal, B. Liu. Review spare detection[C]//WWW 07 Proceedings of the 16th international conference on World Wide Web, 2007.
  • 9Theresa Ann Wilson. Fine-grained Subjectivity and Sentiment Analysis: Recognizing the Intensity, Polari- ty, and Attitudes of Private States[D]. Ph. D Disser-tation, University of Pittsburgh, 2008.
  • 10N. Kobayashi, K. Inui, Y. Matsumoto. Extracting Aspect-Evaluation and Aspect-of Relations in OpinionMining[C]//Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processingand Computational Natural Language Learning (EMN- LP-CoNLL), 2007.

共引文献63

同被引文献93

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部