摘要
以竹粉为研究对象,采用热重-红外联用分析技术和分布活化能模型研究其在较宽升温速率范围(20℃/min、50℃/min、100℃/min)内的热解气体释放特性和热解动力学行为.结果表明:竹粉的热解过程经历了干燥预热、快速热解及炭化3个阶段,升温速率的提高使得热解失重曲线和微分失重曲线均向高温侧偏移,同时增加了最大失重速率,有利于挥发成分的充分析出;竹粉热解气体释放相对含量较多的是CO_( 2),其次为醛、酮、酸类及芳香烃、烷烃、酚类等有机组分.竹粉的热解活化能随其转化率的增加波动明显,转化率在0.10~0.25间主要发生半纤维素的热解反应,活化能逐渐升高,转化率在0.25~0.80时主要发生纤维素、木质素分解及热解焦的二次分解反应,活化能整体上在219.7~268.8 kJ/mol间波动.
The pyrolysis gas release behavior and pyrolysis kinetics characteristics of bamboo powder were investigated by using TG-FTIR instrument and distributed activation energy model(DAEM)under a wide range of heating rates(20℃/min,50℃/min,and 100℃/min).The results showed that the pyrolysis process of bamboo powder experienced three stages,that was,the preheating drying stage,fast degradation stage and carbonization stage.The pyrolysis weight loss curve and differential weight loss curve shifted to the high temperature side with the increase of heating rate.The maximum of mass loss rate also increased as the heating rate increased,which was conducive to the full release of volatile components.The prominent volatile components released during the pyrolysis process of bamboo were CO_( 2),aldehydes,ketones,organic acids and aromatic hydrocarbon,alkanes,phenols,etc.The activation energies fluctuated obviously with the conversion degree.The activation energies increased gradually with conversion degree during 0.10 and 0.25.During 0.25 and 0.80,the decomposition of cellulose/lignin and secondary decomposition of coke occurred,and the activation energies ranged from 219.7 kJ/mol to 268.8 kJ/mol.
作者
张果
岳凌宇
叶建斌
贺远
李瑞丽
梁淼
ZHANG Guo;YUE Lingyu;YE Jianbin;HE Yuan;LI Ruili;LIANG Miao(College of Material and Chemical Engineering,Zhengzhou University of Light Industry,Zhengzhou 450001,China;College of Food and Biological Engineering,Zhengzhou University of Light Industry,Zhengzhou 450001,China)
出处
《轻工学报》
CAS
北大核心
2021年第2期74-82,共9页
Journal of Light Industry
基金
国家自然科学基金项目(41807401)
郑州轻工业大学众创空间项目(2019ZCKJ304)。
关键词
竹粉
热重-红外联用技术
热解特性
分布活化能模型
动力学行为
bamboo powder
TG-FTIR
pyrolysis characteristics
distributed activation energy model
kinetics behavior