期刊文献+

面向复杂环境的机器人避障与路径规划研究

Research on Robot Obstacle Avoidance and Path Planning for Complex Environment
在线阅读 下载PDF
导出
摘要 精确的导航定位技术是机器人进行路径规划和避障的先决条件,在面对复杂多变的外部环境时,传统的路径规划算法收敛速度慢容易陷入局部最优,且单一传感器采集到的图像信息累计误差难以消除。针对这一情况,提出多传感器融合策略,将多个传感器采集到的场景信息通过一定的融合算法进行优势互补同时屏除冗余信息,增强系统的鲁棒性以及普适性;同时对传统的蚁群算法进行改进,采用动态参数对融合策略进行控制,降低死锁现象的发生增加避障能力,进而实现路径规划。通过实验仿真可知,该算法能够安全有效地得到最优路径,收敛速度得到了提升,具有一定的普遍适用性。 Accurate navigation and positioning technology is a prerequisite for robot path planning and obstacle avoidance.In the face of complex and changeable external environments,traditional path planning algorithms tend to converge slowly and easily fall into local optima,and image information collected by a single sensor The cumulative error is difficult to eliminate.In response to this situation,a multi-sensor fusion strategy is proposed.The scene information collected by multiple sensors is complemented by a certain fusion algorithm while eliminating redundant information,enhancing the robustness and universality of the system;The group algorithm is improved,and dynamic parameters are used to control the fusion strategy to reduce the occurrence of deadlock and increase the ability to avoid obstacles,thereby realizing path planning.Through experimental simulation,it can be known that the algorithm can safely and effectively obtain the optimal path,the convergence speed has been improved,and it has a certain general applicability.
作者 侯远韶 HOU Yuanshao(Department of Mechanical and Electrical Engineering,Henan Industry and Trade Vocational College,Zhengzhou,He’nan Province,451191 China)
出处 《科技创新导报》 2020年第31期85-87,共3页 Science and Technology Innovation Herald
基金 河南省高等学校重点科研项目计划:基于多传感器信息融合的移动机器人最优路径规划策略研究(项目编号:20A120007)。
关键词 导航定位 路径规划 信息融合 多传感器 机器人 Navigation and positioning Route plan Information fusion Multi-sensor
  • 相关文献

参考文献6

二级参考文献65

  • 1吴晓涛,孙增圻.用遗传算法进行路径规划[J].清华大学学报(自然科学版),1995,35(5):14-19. 被引量:76
  • 2黄炳强,曹广益.基于人工势场法的移动机器人路径规划研究[J].计算机工程与应用,2006,42(27):26-28. 被引量:39
  • 3[3]Hartmut Surmann,Jrg Huser, Jens Wehking. Path planning for a fuzzy controlled autonomous mobile robot[A]. Fifth IEEE Int. Conf. On Fuzzy Systems Fuzz-IEEE'96[C]. UAS:New Orleans, 1996.
  • 4[8]Kazuo Sugibara, John Smith. Genetic algorithms for adaptive motion planning of an autonomous mobile robots [A]. Problems IEEE Trans SMC[C]. USA:SIM,1997.
  • 5[12]Cai Z X,Peng Z H. Cooperative coevolutionary adaptive genetic algorithm in path planning of cooperative multi-mobile robot systems[J]. Journal of Intelligent and Robotic Systems, 2002,4(33):61-71.
  • 6[14]Tsoukalas LH, Houstis EN,Jones GV. Neurofuzzy motion planners for intelligent robots[J]. Journal of Intelligent and Robotic Systems,1997, 19:339-356.
  • 7[15]Kevin M. Stebbing. the application of genetic algorithms to path planning for mobile robots[D]. A Thesis Submitted to the University of Wales for the Degree of Magister in Scientica,1992.
  • 8[16]Mansor MA, Morris AS. Path planning in unknown environment with obstacles using virtual window[J]. Journal of Intelligent and Robotic Systems, 1999,14(24):235-251.
  • 9[17]Zavlangas PG, Tzafestas SG,Industrial robot navigation and obstacle avoidance employing fuzzy logic[J]. Journal of Intelligent and Robotic Systems,2000, 6(27):85-97.
  • 10刘涛,李海滨,段志信.基于人工力场的移动机器人路径规划研究[J].计算机仿真,2007,24(11):144-146. 被引量:7

共引文献279

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部