期刊文献+

基于亮区域检测的图像去雾增强方法 被引量:1

Image Defogging Enhancement Method Based on Bright Region Detection
在线阅读 下载PDF
导出
摘要 海上发射和回收运载火箭获取的视频图像易受海雾的影响导致成像质量下降。针对传统暗通道先验去雾方法对天空等亮区域失效的不足,提出一种结合图像亮区域检测和图像增强的改进暗通道图像去雾方法。首先利用阈值分割检测原始图像的亮区域,并分别计算亮区域和暗区域的大气光和透射率。然后利用双边滤波对图像透射率进行优化,最后,利用图像增强方法对复原图像进一步优化,解决复原图像亮度较低的问题。针对双边滤波算法运行速度较慢、影响工程应用的问题进行了优化。实验结果表明,复原后的图像具有较好的视觉效果,且运行速度满足工程应用要求。 To solve the deficiency of the traditional dark channel prior defogging method in the failure of the sky equal bright area,an improved dark channel image defogging method combining image bright area detection and image enhancement is proposed.Firstly,the light region of the original image is detected by threshold segmentation,and the atmospheric light and transmittance of the light region and the dark region are calculated respectively.At last,the image enhancement method is used to further optimize the restored image to solve the problem of low brightness of the restored image.The bi-filtering algorithm is optimized to solve the problems of slow speed and impact on engineering application.The experimental results show that the restored image has a good visual effect,and the running speed meets the requirements of engineering application.
作者 叶志鹏 贾睿 宁雷 付继伟 崔利军 Ye Zhi-peng;Jia Rui;Ning Lei;Fu Ji-wei;Cui Li-jun(Beijing Institute of Aerospace Systems Engineering,Beijing,100076;Taiyuan Satellite Launch Center,Taiyuan,030027)
出处 《导弹与航天运载技术》 CSCD 北大核心 2021年第1期115-120,共6页 Missiles and Space Vehicles
关键词 图像处理 雾图像恢复 暗通道 image processing fog image recovery dark channel method
  • 相关文献

参考文献10

二级参考文献44

  • 1王鸿南,钟文,汪静,夏德深.图像清晰度评价方法研究[J].中国图象图形学报(A辑),2004,9(7):828-831. 被引量:124
  • 2Schechner Y Y, Narasimhan S G, Nayar S K. Polarization-basedvision through haze[J]. Applied Optics, 2003, 42(3): 511-525.
  • 3Carlevaris-Bianco N, Mohan A, Eustice R M. Initial results inunderwater single image dehazing[C] //Proceedings of IEEEConference on Oceans 2010. Los Alamitos: IEEE ComputerSociety Press, 2010: 1-8.
  • 4He K, Sun J, Tang X. Guided image filtering[J]. IEEE Transactionson Pattern Analysis and Machine Intelligence, 2013, 35(6):1397-1409.
  • 5He K M, Sun J, Tang X O. Single image haze removal usingdark channel prior[C] //Proceedings of IEEE Conference onComputer Vision and Pattern Recognition. Los Alamitos: IEEEComputer Society Press, 2009: 1956-1963.
  • 6Xu H R, Guo J M, Liu Q, et al. Fast Image Dehazing UsingImproved Dark Channel Prior[C] //Proceedings of IEEE InternationalConference on Information Science and Technology.Los Alamitos: IEEE Computer Society Press, 2012: 663-667.
  • 7Park D, KO H. Fog-degraded image restoration using charac teristics of RGB channel in single monocular image[C]//Proceedings of IEEE International Conference on ConsumerElectronics. Los Alamitos: IEEE Computer Society Press, 2012:139-140.
  • 8Perona P, Malik J. Scale-space and edge detection using anisotropicdiffusion[J]. IEEE Transactions on Pattern Analysisand Machine Intelligence, 1990, 12(7): 629-639.
  • 9Geusebroek J M, Smeulders A W M, van de Weije J. Fast anisotropicGauss filtering[J]. IEEE Transactions Image Processing,2003, 12(8): 938-943.
  • 10Eskicioglu A M, Fisher P S. Image quality measures and theirperformance[J]. IEEE Transactions on Communications, 1995,43(12): 2959-2965.

共引文献88

同被引文献7

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部