期刊文献+

新型教学优化算法可重入混合流水车间调度 被引量:5

A Novel Teaching-learning-based Optimization Algorithm for Reentrant Hybrid Flow Shop Scheduling
原文传递
导出
摘要 针对可重入混合流水车间调度问题(Reentrant Hybrid Flow Shop Scheduling Problem,RHFSP),提出一种基于新型优化机理的教学优化(Teaching-Learning-Based Optimization,TLBO)算法以最小化最大完成时间,该算法将学生分成好学生和差学生,主要步骤为教师阶段和学生阶段,其中,教师阶段包括教师的自学和交互学习,学生阶段包括学生接受教师的教学、好学生相互学习和差学生的强化学习。运用多邻域搜索实现教师的自学,其他阶段都通过全局搜索来实现。取消差学生的相互学习以避免低效率搜索。大量的实验结果表明,新型TLBO是解决RHFSP的一种有效方法。 To solve reentrant hybrid flow shop scheduling problem(RHFSP), a new teaching-learning-based optimization(TLBO) algorithm with new optimization mechanism is presented for minimizing makespan, in which students are divided into good ones and bad ones. The main steps of TLBO are teacher stage and student stage. Teacher stage includes the self-learning and interactive learning of teachers and student stage includes the learning from teacher, interactive learning of good students and the reinforced learning of bad students. The self-learning of teachers is implemented using multiple neighborhood search and global search is used to implement other actives of teachers and students. The interactive learning of bad students is deleted to avoid the low-efficiency search. The extensive experiments are done and the results show that the new TLBO is an effective method for RHFSP.
作者 许智伟 吕聪 雷德明 XU Zhi-wei;LV Cong;LEI De-ming(School of Automation,Wuhan University of Technology,Wuhan 430070,China)
出处 《控制工程》 CSCD 北大核心 2020年第10期1812-1819,共8页 Control Engineering of China
基金 国家自然科学基金项目(61573264)。
关键词 混合流水车间调度 可重入 教学优化算法 Hybrid flow shop scheduling reentrant teaching-learning-based optimization algorithm
  • 相关文献

参考文献5

二级参考文献50

  • 1潘峰,陈杰,甘明刚,蔡涛,涂序彦.粒子群优化算法模型分析[J].自动化学报,2006,32(3):368-377. 被引量:67
  • 2金欣磊,马龙华,吴铁军,钱积新.基于随机过程的PSO收敛性分析[J].自动化学报,2007,33(12):1263-1268. 被引量:39
  • 3OJO K S, NJAH A N, OGUNJO S T. Comparison of backstepping and modified active control in projective synchronization of chaos in an extend Bonh~ffer-van der Pol oscillator[ J]. PRAMANA-Journal of Physics, 2013, 80(5): 825-835.
  • 4HU C, JIANG I4 J, TENG Z D. Fuzzy impulsive control and syn- chronization of general chaotic system[ J]. Acta App|icandae Math- ematicae, 2010, 109(2): 463-485.
  • 5VAIDYANATHAN S, RASAPPAN S. Global chaos synchronization of n-Scroll Chua circuit and Lur' e system using backstepping control design with recursive feedback[ J]. Arabian Journal for Science and Engineering, 2014, 39(4): 3351-3364.
  • 6BHALEKAR S. Synchronization of fractional order chaotic systems using active control[ J]. Tile Europe- an Physical Journal Special Topics, 2014, 223(8): 1495 - 1508.
  • 7ZHAO Z G, JIANG J L, YU Z P, et al. Starting sliding mode varia- ble structure that coordinates the control and real-time optimization of dry dual dutch transmissions[ J]. International Journal of Auto- motive Technology, 2013, 14(6) : 875 - 888.
  • 8HACHINO T, YAMAKAWA S. Non-parametric identification of continuous-time Hammerstein systems using Gaussian process mod- el and particle swarm optimization[ J]. Artificial Life and Robot- ics, 2012, 17(1) : 35 -40.
  • 9JAU Y M, WU C J, JENG J T. A fast parameter estimation for nonlinear multi-regressions based on the Choquet integral with quantum-behaved particle swarm optimization[J]. Artificial Life and Robotics, 2010, 15(2): 199-202.
  • 10LOUODOP P, KOUNTCHOU M, FOTSIN H, et al. Practical fi- nite-time synchronization of jerk systems: theory and experiment [J]. Nonlinear Dynamics, 2014, 78(1): 597-607.

共引文献110

同被引文献50

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部