期刊文献+

采用牛顿迭代保辛伪谱算法的舰载机甲板路径规划 被引量:8

Trajectory planning for carrier aircraft on deck using Newton Symplectic pseudo-spectral method
在线阅读 下载PDF
导出
摘要 建立单机滑行、离轴无杆牵引、离轴有杆牵引3类舰载机调运模式下的运动学模型.考虑到有杆牵引系统运动学模型的强非线性,将其转化为一个更加简单的虚拟在轴无杆牵引系统,以便于轨迹的求解.综合考虑调运效率和安全性,将3类调运模式的轨迹规划问题转化为时间-能量混合最优问题.为了实现对非线性最优控制问题的高效求解,基于第三类生成函数、辛理论和伪谱离散提出保辛伪谱方法(SPM),并根据终端横截条件采用牛顿迭代和SPM确定终端时间.将提出的方法应用于3类调运模式的轨迹规划问题,并将所得结果与直接伪谱法进行对比.仿真结果表明:所提算法能够以更高的精度和效率规划出平滑的舰载机路径,且不会出现非可行解,具有更强的可操作性和适用性. The kinematic models for three dispatch modes of carrier aircraft were established,including individually taxiing,off-axle hitching towing without drawbar,and off-axle hitching towing with drawbar.As the high nonlinearity in the kinematics,a towing system with drawbar was transformed into a simpler virtual on-axle hitching towing system so as to facilitate the trajectory planning.Considering the dispatch efficiency and security,the trajectory planning problems of three dispatch modes were formulated as time-energy hybrid optimal control problems.To solve the nonlinear optimal control problem efficiently,a Symplectic pseudo-spectral method(SPM)was firstly developed based on the third kind of generating function,Symplectic theory and pseudo-spectral discretization.Then the Newton iteration and the SPM were used to determine the optimal terminal time according to the terminal transversality condition.The developed method was applied to solve trajectory planning problems of three dispatch modes,and the direct pseudo-spectral method was implemented for comparison.The simulation results suggest that the developed method can generate smooth dispatch trajectories with higher accuracy and efficiency,where no infeasible solution occurs,leading to better operability and applicability.
作者 刘洁 董献洲 韩维 王昕炜 刘纯 贾珺 LIU Jie;DONG Xian-zhou;HAN Wei;WANG Xin-wei;LIU Chun;JIA Jun(War Research Institute,Academy of Military Sciences,Beijing 100850,China;Naval Aviation University,Yantai 264001,China;650 Aircraft Design Institute of AVIC Hongdu,Nanchang 330024,China;Department of Engineering Mechanics,Dalian University of Technology,Dalian 116024,China)
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第9期1827-1838,共12页 Journal of Zhejiang University:Engineering Science
基金 国家重点研发计划资助项目(2016YFB0200702) 中国博士后科学基金资助项目(2020M670744) 国家自然科学基金资助项目(11772074,11761131005,91748203).
关键词 舰载机 路径规划 保辛伪谱算法(SPM) 牛顿迭代法 最优控制 carrier aircraft trajectory planning Symplectic pseudo-spectral method(SPM) Newton iteration method optimal control
  • 相关文献

参考文献6

二级参考文献41

  • 1DUAN HaiBin 1 ,SHAO Shan 2 ,SU BingWei 3 &ZHANG Lei 41 State Key Laboratory of Science and Technology on Holistic Flight Control,School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics,Beijing 100191,China,2 Flight Control Department,Shenyang Aircraft Design and Research Institute,Shenyang 110035,China,3 Beijing Institute of Near Space Vehicle’s System Engineering,Beijing 100076,China,4Integration and Project Section,Air Force Equipment Academy,Beijing 100085,China.New development thoughts on the bio-inspired intelligence based control for unmanned combat aerial vehicle[J].Science China(Technological Sciences),2010,53(8):2025-2031. 被引量:34
  • 2郑昌文,严平,丁明跃,等.飞行器航迹规划[M].北京:国防工业出版社,2008.
  • 3宋建梅,李侃.基于A*算法的远程导弹三维航迹规划算法[J].北京理工大学学报,2007,27(7):613-617. 被引量:31
  • 4Han W. Wang Q G. Conspectus of adrcraft carrier and currier platte[M]. Yantai: Naval Aeronautical and Astronautical Uni versily Press. 2009:37 - 41,.
  • 5Fu Y G, Ding M Y, Zhou C P. Phase angle encoded and quan- tum behaved parlicle swarm optimization applied 1o three dimen sional route planning for UAV[J]. IEEE Tatsm Systems, Man aul Cybernetics Part A : Systems fltmans. 2012. 12 (2): 511-526.
  • 6Authority of thehicf of Naval Operations. CV Flight lhmgar Deck NATOPSManua[R]. Washington. DV: Authority of the Chief of Naval Operations 2001.
  • 7Johnston J S. A feasibility study of a persistent monitoring sys- tem for the flight deck of U. S[D]. USA: Navy Aircraft Carriers Department of the Air Force Air University, 2009.
  • 8Deng Y, Chen Y, Zhang Y, et al. Fuzzy Dijkstra algorithm for shortest path problem under uncertain environment[J]. Applied Sot Computing, 2012, 12(3) : 1231 - 1237.
  • 9Livx R, Fang 13, Tang Y Y. A fast convex hull algorithm with maximum inscribed circle affine transformation[J]. Neurocom- puting, 2012, 77(1): 212-221.
  • 10Brun C, Dufourd J F, Magaud N. Designing and proving correct a convex hull algorithm with hypermaps in Coq[J]. Computa- tional Geometry, 2012, 45(8) : 436 - 457.

共引文献103

同被引文献90

引证文献8

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部