期刊文献+

一种基于质心的多标签文本分类模型研究 被引量:4

A multi-label text classification model based on centroid
在线阅读 下载PDF
导出
摘要 为了解决目前所提出的多标签分类算法仍然存在分类精度低和计算复杂度高的问题,提出了一种基于质心的多标签引力模型(ML-GM)。在训练阶段,通过计算文档与类的质心之间的相似性来获得相似性区间。在测试阶段,通过比较未定义文档和类质心之间的相似性是否在相似性区间内来进行多标签分类。该模型通过引入质心分类器和引力模型(GM)解决了计算复杂度高、分类精度低的问题。在实验中使用了雅虎数据集,结果表明,ML-GM在平均精确度、AUC、1-错误率和汉明损失上都有优越性。 In order to solve the problem that the current multi-label classification algorithm has low classification accuracy and high computational complexity,a centroid-based multi-label model for text categorization,named Multi-label Gravitation Model(ML-GM),is proposed.In the training phase,a similarity interval by calculating the similarity between the document and the centroid of the class.In the test phase,multi-label classification is performed by comparing the similarity between the undefined document and the class centroid is within the similarity interval.The model solves the problem of high computational complexity and low classification accuracy by introducing a centroid classifier and a gravity model.The Yahoo dataset is used in the experiment,and the results show that ML-GM achieves supe-rior performance in terms of average accuracy,AUC,one-error and hamming loss.
作者 李校林 王成 LI Xiao-lin;WANG Cheng(College of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065;Research Center of New Telecommunication Technology Applications,Chongqing University of Posts and Telecommunications,Chongqing 400065;Chongqing Information Technology Designing Limited Company,Chongqing 400021,China)
出处 《计算机工程与科学》 CSCD 北大核心 2020年第6期1120-1126,共7页 Computer Engineering & Science
关键词 文本分类 质心分类器 多标签学习 引力模型 相似度区间 text classification centroid-based classifier multi-label learning gravitation model similarity interval
  • 相关文献

参考文献2

二级参考文献2

共引文献35

同被引文献31

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部