期刊文献+

基于组合能量特征的表面肌电信号手势识别算法 被引量:14

Surface EMG signal hand motion recognition algorithm based on combinated energy characteristics
在线阅读 下载PDF
导出
摘要 为了提高基于表面肌电信号(sEMG)的手势动作识别准确率,提出一种基于肌电信号组合能量特征的手势识别方法。首先,计算s EMG信号和其高阶差分信号的能量谱;然后,提取基于能量谱的组合特征;最后,用主成分分析(PCA)算法对多组能量特征维度约简,线性判决分析(LDA)分类器识别手势动作。利用肌电仪采集8组手势动作进行识别,基于组合能量特征的肌电信号手势识别方法对于手势动作识别的准确率可达97. 5%,比基于典型特征提取算法手势动作识别准确率更高;利用UCI数据库中的肌电信号进行实验,手势识别准确率可达94. 5%。实验表明:组合能量特征提取算法对不同的数据库具有普适性,所提取肌电信号组合能量特征能使不同手势动作的差异性更明显,整个手势识别方法准确率更高。 In order to improve the accuracy of gesture recognition based on surface electromyography signal( s EMG),a gesture recognition method based on the combined energy characteristics of electromyography signal is proposed. Firstly,the energy spectrum of s EMG signal and its high-order differential signal are calculated. Then,the combined features based on energy spectrum are extracted. Finally,PCA algorithm is used to reduce the multigroup energy feature dimension,and the LDA classifier is used to recognize gestures. Eight groups of gestures are collected by electromyography for recognition,and the recognition accuracy of electromyography signal gesture recognition method based on combined energy features can reach 97. 5%. which is higher than that based on typical feature extraction algorithm. By using the EMG signal in UCI database,the accuracy of gesture recognition can reach 94. 5 %. Experiments show that the combined energy feature extraction algorithm is applicable to different databases,and the extracted EMG combined energy feature can make the difference between different gestures more obvious,and the accuracy of the whole gesture recognition method is higher.
作者 宋佳强 裴晓敏 赵强 刘洪海 SONG Jiaqiang;PEI Xiaomin;ZHAO Qiang;LIU Honghai(School of Information and Control Engineering,Liaoning Shihua University,Fushun 113001,China;Intelligent Systems and Biomedical Robotics Group,University of Portsmouth,PO13QL,Portsmouth)
出处 《传感器与微系统》 CSCD 2020年第6期139-142,共4页 Transducer and Microsystem Technologies
基金 辽宁省自然科学基金资助项目(20180551056)。
关键词 表面肌电 特征提取 手势识别 降维 线性判别式分析 surface EMG(s EMG) feature extraction gesture recognition dimension reduction linear discriminant analysis(LDA)
  • 相关文献

参考文献6

二级参考文献39

共引文献34

同被引文献75

引证文献14

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部