期刊文献+

FPGA implementation of neural network accelerator for pulse information extraction in high energy physics 被引量:2

在线阅读 下载PDF
导出
摘要 Extracting the amplitude and time information from the shaped pulse is an important step in nuclear physics experiments.For this purpose,a neural network can be an alternative in off-line data processing.For processing the data in real time and reducing the off-line data storage required in a trigger event,we designed a customized neural network accelerator on a field programmable gate array platform to implement specific layers in a convolutional neural network.The latter is then used in the front-end electronics of the detector.With fully reconfigurable hardware,a tested neural network structure was used for accurate timing of shaped pulses common in front-end electronics.This design can handle up to four channels of pulse signals at once.The peak performance of each channel is 1.665 Giga operations per second at a working frequency of 25 MHz.
出处 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第5期27-35,共9页 核技术(英文)
基金 supported by the National Natural Science Foundation of China(Nos.11875146 and 11505074) National Key Research and Development Program of China(No.2016YFE0100900).
  • 相关文献

参考文献1

共引文献10

同被引文献9

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部