期刊文献+

基于物联网技术的音乐特征识别系统设计 被引量:3

Design of music feature recognition system based on Internet of Things technology
在线阅读 下载PDF
导出
摘要 由于受到音乐专业性强、乐理知识复杂、变化多样等因素影响,导致音乐特征识别难度较大,为此设计基于物联网技术的音乐特征识别系统。系统物理感知层在不同位置布设声音传感器采集音乐原始信号,采用TMS320VC5402数字信号处理器展开音乐信号分析处理;网络传输层将处理完成音乐信号,传输至系统应用层中的音乐信号数据库中;应用层中的音乐特征分析模块,采用动态时间规整算法,获取测试模板和参考模板间最大相似度,实现音乐信号特征识别,并依据识别结果识别音乐曲式和音乐情感对应音乐特征内容。实验结果表明,该系统运行稳定,可采集到高音质音乐信号,且能正确识别音乐曲式特征和情感特征。 In allusion to the influence of strong music specialization,complex music theory knowledge,various changes and other factors,it is difficult to recognize the music features. Therefore,a music feature recognition system based on Internet of Things technology is designed. The sound sensors are equipped at the different locations in the physical perception layer of the system to collect the original music signal. The music signals are analyzed and processed by the digital signal processor TMS320 VC5402. The processed music signals are transmitted to the music signal database in the application layer of the system through network transmission layer. The maximum similarity between the testing template and the reference template is obtained with the music feature analysis module in the application layer and by means of the dynamic time warping algorithm,so as to realize the music signal feature recognition,and identify the musical form and musical emotion corresponding to the music feature contents according to the recognition results. The experimental results show that the system runs steadily,can collect highquality music signals,and can identify the musical form features and emotional features correctly.
作者 陈浩 吴煜祺 CHEN Hao;WU Yuqi(Shiyuan College of Nanning Normal University,Nanning 530226,China;Jiaxing University Nanhu College,Jiaxing 314001,China)
出处 《现代电子技术》 北大核心 2020年第10期43-45,50,共4页 Modern Electronics Technique
基金 国家自然科学基金青年基金项目(61603154)。
关键词 音乐特征识别 物联网 系统设计 信号采集 信号处理 实验分析 music feature recognition Internet of Things system design signal acquisition signal processing experimental analysis
  • 相关文献

参考文献11

二级参考文献62

共引文献91

同被引文献33

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部