期刊文献+

新冠肺炎疫情下公立医院面临的网络舆情特征与应对策略分析 被引量:22

Analysis of online public sentiment characteristics and response of public hospitals since the outbreak of COVID-19
原文传递
导出
摘要 目的通过分析新型冠状病毒肺炎(以下简称新冠肺炎)发生以来公立医院面临的网络舆情现状和特征,为公立医院网络舆情处置提出建议。方法通过新浪微博数据分析工具和第三方数据统计工具,抓取2019年12月至2020年2月,在"新浪微博""抖音""今日头条"3家主流新媒体平台上,以"武汉协和""协和抗疫"为关键词的"热搜"事件数据,利用内容分析法,统计发生频次、时间分布、关注热度和发展趋势等。结果新冠肺炎疫情期间,公立医院面临的网络舆情呈指数级激增的态势,累计总搜索量为72119802次,是疫情发生前医院被关注热度的数万倍;且网络舆论传播呈现出内容碎片化、速度瞬时化以及负性信息关注度更高等特点。结论新冠肺炎网络舆论的公众参与度空前高涨,对公立医院网络舆情处置带来了挑战。公立医院应提高重视程度,并建立健全相应处置机制。 Objective To analyze the current situation and characteristics of online public sentiments faced by public hospitals since the outbreak of COVID-19,and provide suggestions for coping strategies for such hospitals.Methods The data of"trending topic"or"Trending hash tag"of"Wuhan Union Hospital"and"anti-epidemic"were captured on three mainstream new media platforms,namely Sina Microblog,Tik Tok and Headline Today with the help of data analysis tools of Sina and online data statistical software from December 2019 to February 2020.Content analysis method was used to analyze the occurrence frequency,time distribution and development trend of public sentiment on Internet.Results Under the epidemic of COVID-19,public hospitals faced an exponential growth of online public sentiment.The cumulative total number of searches was 72119802 tens of thousands of that before the epidemic.The transmission showed fragmentation of content,instantaneous speed and higher attention to negative information,which brought great challenges for public hospitals.Conclusions The high participation of online discussion of COVID-19 is unprecedented.Thus public hospitals should attach importance to the work related to online public sentiment,and establish corresponding coping mechanism for response.
作者 李奕 张可可 章钰 汪宏波 易晖 周琼 Li Yi;Zhang Keke;Zhang Yu;Wang Hongbo;Yi Hui;Zhou Qiong(Discipline and Inspection Office,Union Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430022,China;Teaching and Learning Office,College of Nursing,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430030,China;Dean′s Office,Wuhan Hospital of Traditional Chinese Medicine,Wuhan 430014,China;General Committee Office,Union Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430022,China)
出处 《中华医院管理杂志》 CSCD 北大核心 2020年第4期349-352,共4页 Chinese Journal of Hospital Administration
关键词 医院 公立 网络舆情 新型冠状病毒肺炎 应对策略 Hospitals public Online public sentiment COVID-19 Coping strategies
  • 相关文献

参考文献5

二级参考文献43

  • 1刘毅.内容分析法在网络舆情信息分析中的应用[J].天津大学学报(社会科学版),2006,8(4):307-310. 被引量:67
  • 2周秀红.构建和谐的医患信息沟通平台[J].中华医院管理杂志,2006,22(12):829-831. 被引量:19
  • 3人民网舆情监测室.2011年新浪政务微博报告[R/OL].(2011-12-13)[2012-03-03].http://magazine.sina.com.cn/weibo/zwwbbg20111211.pdf.
  • 4中国新闻网.舆情蓝皮书:微博首次曝光热点事件比例显著上升[EB/OL].[2012-08-18].http://www.chinanews.com/gn/2012/08-18/4116699.shtml.
  • 5伊丽莎白·诺依曼.大众观念理论:沉默螺旋的概念[M]//常昌富,李依倩.大众传播学:影响研究范式.北京:中国社会科学出版社,2000:140.
  • 6维基百科.沉默的螺旋[EB/OL].[2012-09-07].http://zh.wikipedimorg/zh/%E6%B2%89%E9%BB%98%E7%9A%84%E8%9E%BA%E6%97%8B.
  • 7姜澎.舆隋蓝皮书《中国社会舆情与危机管理报告(2014)》发布网络舆情热度首现拐点[EB/OL].[2014-08-21].http://www.cssn.cn/xwcbrdxwcbx_rdjj/201408/t20140821-1299691.shtm.
  • 8陈方.中国人是不是患上了"坏消息综合征"[N].中国青年报,2010-08-04.
  • 9中国互联网络信息统计中心.第34次中国互联网络发展状况统计报告[R/OL].[2014-09-04].http://www.199it.com/ar-chives/257572.html.
  • 10中研网.腾讯上半年盈利122亿,微信用户数量大增[EB/0L].[2014-08-15].http://www.chinaim.com/news/20140815/092945427.shtml.

共引文献23

同被引文献262

引证文献22

二级引证文献153

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部