期刊文献+

基于卷积神经网络的野外烟雾检测研究 被引量:2

Wildfire Smoke Detection Based on Convolutional Neural Network
在线阅读 下载PDF
导出
摘要 野外烟雾具有稀疏性,在整幅图像中所占面积小,扩散缓慢。传统烟雾检测算法由人工提取的特征不一定是最合适的烟雾特征,从而导致烟雾检测存在错检或误检。为此,设计了基于卷积神经网络的野外烟雾检测算法。通过改进的VGG16网络以及搭建的卷积神经网络conv-10进行烟雾检测。VGG16过滤器尺寸大小为3×3,步长为1。conv-10通过对LeNet增加相应的层数进行烟雾检测。实验证明,conv-10网络具有较高的准确率,达到94.7%,时间仅需要1656s。改进的VGG16网络准确率也较高,但是比conv-10网络速度慢,时间需要10450s。 Traditional smoke detection algorithm detects smoke according to the features extracted manually.Because the features extracted manually are not necessarily the most suitable features for smoke,there would be false detection or false detection in smoke detection.Field smoke is sparse,occupies a small area in the whole image and diffuses slowly.In this paper,a field smoke detection algorithm based on convolution neural network is designed.Smoke detection was carried out by improved VGG16 network and conv-10 convolution neural network.The size of VGG16 filters is 3*3 and the step size is 1.Conv-10 detects smoke by adding layers to LeNet.Experiments show that the conv-10 network has a high accuracy rate of 94.7%and only needs 1656 seconds.The network accuracy of the improved VGG16 is relatively high,but compared with the conv-10 network,the speed is slower and the time is 10450s.
作者 张欣欣 ZHANG Xin-xin(College of Computer Science and Engineering,Shandong University of Science and Technology,Qingdao 266590,China)
出处 《软件导刊》 2020年第2期118-121,共4页 Software Guide
关键词 烟雾检测 卷积神经网络 深度学习 conv-10 VGG16 smoke detection convolutional neural network deep learning conv-10 VGG16
  • 相关文献

参考文献6

二级参考文献78

  • 1王冰,职秦川,张仲选,耿国华,周明全.灰度图像质心快速算法[J].计算机辅助设计与图形学学报,2004,16(10):1360-1365. 被引量:32
  • 2袁非牛,廖光煊,张永明,刘勇,于春雨,王进军,刘炳海.计算机视觉火灾探测中的特征提取[J].中国科学技术大学学报,2006,36(1):39-43. 被引量:53
  • 3Yuan Fei-niu.A fast accumulative motion orientation model based on integral image for video smoke detection[J].Pattern Recognition Letters,2008,29(7):925-932.
  • 4Ugur Toreyin,Yigithan Dedeoglu,and Ugur Gudukbay,et al..Computer vision based method for real-time fire and flame detection[J].Pattern Recognition Letters,2006,27(1):49-58.
  • 5Gonzalez R,Aquino A,and Romero R,et al..Wavelet-based smoke detection in outdoor video sequences[C].The 53rd IEEE International Midwest Symposium on Circuits and Systems,Seattle,USA,1-4 August,2010:383-387.
  • 6Kim Dong-keun and Wang Yuan-fang.Smoke detection in video[C].World Congress on Computer Science and Information Engineering,Los Angeles,USA,March 31-April 2,2009,5:759-763.
  • 7Chen Thou-ho (Chao-ho),Yin Yen-hui,and Huang Shi-feng,et al..The smoke detection for early fire-alarming system base on video processing[C].IEEE International Conference on Intelligent Information Hiding and Multimedia Signal Processing,Pasadena,California,USA,December 18-20,2006:427-430.
  • 8Yang Jing,Chen Feng,and Zhang Wei-dong.Visual-based smoke detection using support vector machine[C].Fourth International Conference on Natural Computation,Jinan,China,August 25-27,2008,4:301-305.
  • 9Wei Zheng,Wang Xin-gang,and An Wen-chuan.Targettracking based early fire smoke detection in video[C].International Conference on Image and Graphics,Xi'an,China,September 21-24,2009:172-176.
  • 10Takagi T and Sugeno M.Fuzzy identification of systems and its applications to modeling and control[J].IEEE Transactions on Systems,Man,Cysbernetics,1985,15(1):116-132.

共引文献162

同被引文献29

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部