期刊文献+

基于藤Copula-GARCH模型的金融资产间相依性研究

Research on the correlation of financial markets based on vine Copula-GARCH model
在线阅读 下载PDF
导出
摘要 目的在金融市场多元化的背景下,研究各市场间的相关性对风险控制及投资组合问题有着巨大的帮助,构建GARCH Pair-Copula模型研究标普500指数、道琼斯工业指数、恒生指数、日经225指数、沪深300指数之间的相依关系。方法选取5个股指的日收益率序列,利用AR(1)-GARCH(1,1)-偏斜t模型和AR(1)-GJR(1,1)-偏斜t模型拟合其分布,用IFM方法估计参数,利用AIC和BIC准则选取最优的模型。结果在C藤和D藤结构下,选取Clayton Pair-Copula,t Pair-Copula,SJC Pair-Copula刻画市场间的相依关系。结论基于C藤的t Pair-Copula能较好地刻画市场间尾部对称的相依结构。 Purposes—To study the dependence of S&P 500 index,Dow Jones industrial index,Hang Seng index,Nikkei 225 index and Shanghai-Shenzhen 300 index by constructing GARCH Pair-Copula model because the study on the correlation between different markets under the background of diversification of financial markets is helpful for risk control and portfolio problems.Methods—The AR(1)-GARCH(1,1)-skewed t model and AR(1)-GJR(1,1)-skewed t model were used to fit the distribution of the selected daily return series of five indexes and the parameters were estimated with IFM method,meanwhile,AIC and BIC criteria were employed to select the optimal model.Result—Under the structure of C-vine and D-vine,Clayton Pair-Copula,t Pair-Copula,SJC Pair-Copula are selected to describe the dependent relationship between the markets.Conclusion—The results show that t Pair-Copula based on C-vine can depict the symmetric tail dependence structure between markets.
作者 张转转 卢俊香 ZHANG Zhuan-zhuan;LU Jun-xiang(School of Science, Xi’an Polytechnic University, Xi’an 710061, Shaanxi, China;Faculty of Economics and Management, Xi’an University of Technology, Xi’an 710048, Shaanxi, China)
出处 《宝鸡文理学院学报(自然科学版)》 CAS 2020年第1期7-13,共7页 Journal of Baoji University of Arts and Sciences(Natural Science Edition)
基金 国家自然科学基金项目(11601410) 陕西省自然科学基金项目(2017JM1007) 中国博士后科学基金(2017M613169)。
关键词 GARCH模型 藤结构 PAIR-COPULA 相依结构 GARCH model vine structure Pair-Copula dependence structure
  • 相关文献

参考文献5

二级参考文献56

  • 1吴振翔,叶五一,缪柏其.基于Copula的外汇投资组合风险分析[J].中国管理科学,2004,12(4):1-5. 被引量:51
  • 2蒋春福,李善民,梁四安.中国股市收益率分布特征的实证研究[J].数理统计与管理,2007,26(4):710-717. 被引量:10
  • 3Jondeau E, Rockinger M. The copula - GARCH model of conditional dependencies: An international stock - market application [ J ]. Journal of International Money and Fi- nance, 2006, 25 (5), 827-853.
  • 4Fortin I, Kuzmics CI Tail-dependence in stock return- pairs. International Journal of Intelligent Systems in Ac- counting [ J]. Finance & Management, 2000, 11 (2), 89 - 107.
  • 5Patton A J. Estimation of multivariate models for time series of possibly different lengths [ J ]. Journal of applied econo- metrics, 2006, 21, 147 - 173.
  • 6Boyer B H, Gibson M S, Loretan M. Pitfalls in tests for changes in correlations [ R ]. International finance discus- sion paper Board of Governors of the Federal Reserve Sys- tem, 1999.
  • 7Engle R, Sheppard K. Theoretical and empirical properties of dynamic conditional correlation MVGARCH [ R]. San Diego Working Paper, University of California, 2001.
  • 8Loretan M, English W B. Evaluating correlation break- downs during periods of market volatility [ R]. Internation- al Finance Working Paper, Board of Governors of the Fed- eral Reserve System, 2000.
  • 9Bedford T, Cooke R M. Probability density decomposition for conditionally dependent random variables modeled by vines [ J ]. Annals of mathematics and artificial intelli- gence, 2001, (32), 245-268.
  • 10Aas K, Czado C, Frigessi A, et al. Pair- copula con- structions of multiple dependence [ J]. Insurance, mathe- matics and economics, 2009, (44) , 182 - 198.

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部